Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Giant outer transiting exoplanet mass (GOT ’EM) survey. III. Recovery and confirmation of a temperate, mildly eccentric, single-transit Jupiter orbiting TOI-2010
    (IOP Publishing, 2023) ;
    Mann, Christopher
    ;
    Dalba, Paul
    ;
    Lafrenière, David
    ;
    Fulton, Benjamin
    ;
    Hébrard, Guillaume
    ;
    Boisse, Isabelle
    ;
    Dalal, Shweta
    ;
    Deleuil, Magali
    ;
    Delfosse, Xavier
    ;
    Demangeon, Olivier
    ;
    Forveille, Thierry
    ;
    Heidari, Neda
    ;
    Kiefer, Flavien
    ;
    Martioli, Eder
    ;
    Moutou, Claire
    ;
    Endl, Michael
    ;
    Cochran, William
    ;
    MacQueen, Phillip
    ;
    Marchis, Franck
    ;
    Dragomir, Diana
    ;
    Gupta, Arvind
    ;
    Feliz, Dax
    ;
    Nicholson, Belinda
    ;
    Ziegler, Carl
    ;
    Villanueva, Steven
    ;
    Rowe, Jason
    ;
    Talens, Geert Jan
    ;
    Thorngren, Daniel
    ;
    LaCourse, Daryll
    ;
    Jacobs, Tom
    ;
    Howard, Andrew
    ;
    Bieryla, Allyson
    ;
    Latham, David
    ;
    Fetherolf, Tara
    ;
    Hellier, Coel
    ;
    Howell, Steve
    ;
    Plavchan, Peter
    ;
    Reefe, Michael
    ;
    Combs, Deven
    ;
    Bowen, Michael
    ;
    Wittrock, Justin
    ;
    Ricker, George
    ;
    Seager, S.
    ;
    Winn, Joshua
    ;
    Jenkins, Jon
    ;
    Barclay, Thomas
    ;
    Watanabe, David
    ;
    Collins, Karen
    ;
    Eastman, Jason
    ;
    Ting, Eric
    Large-scale exoplanet surveys like the Transiting Exoplanet Survey Satellite (TESS) mission are powerful tools for discovering large numbers of exoplanet candidates. Single-transit events are commonplace within the resulting candidate list due to the unavoidable limitation of the observing baseline. These single-transit planets often remain unverified due to their unknown orbital periods and consequent difficulty in scheduling follow-up observations. In some cases, radial velocity (RV) follow up can constrain the period enough to enable a future targeted transit detection. We present the confirmation of one such planet: TOI-2010 b. Nearly three years of RV coverage determined the period to a level where a broad window search could be undertaken with the Near-Earth Object Surveillance Satellite, detecting an additional transit. An additional detection in a much later TESS sector solidified our final parameter estimation. We find TOI-2010 b to be a Jovian planet (MP = 1.29 MJup, RP = 1.05 RJup) on a mildly eccentric orbit (e = 0.21) with a period of P = 141.83403 days. Assuming a simple model with no albedo and perfect heat redistribution, the equilibrium temperature ranges from about 360 to 450 K from apastron to periastron. Its wide orbit and bright host star (V = 9.85) make TOI-2010 b a valuable test bed for future lowinsolation atmospheric analysis.
  • Publication
    TOI-1431b/MASCARA-5b: A highly irradiated Ultrahot Jupiter orbiting one of the hottest and brightest known exoplanet host stars
    (IOP Publishing, 2021) ;
    Addison, Brett
    ;
    Knudstrup, Emil
    ;
    Wong, Ian
    ;
    Hébrard, Guillaume
    ;
    Dorval, Patrick
    ;
    Snellen, Ignas
    ;
    Albrecht, Simon
    ;
    Bello-Arufe, Aaron
    ;
    Almenara, Jose-Manuel
    ;
    Boisse, Isabelle
    ;
    Bonfils, Xavier
    ;
    Dalal, Shweta
    ;
    Demangeon, Olivier
    ;
    Hoyer, Sergio
    ;
    Kiefer, Flavien
    ;
    Santos, N. C.
    ;
    Nowak, Grzegorz
    ;
    Luque, Rafael
    ;
    Stangret, Monika
    ;
    Palle, Enric
    ;
    Tronsgaard, René
    ;
    Antoci, Victoria
    ;
    Buchhave, Lars A.
    ;
    Günther, Maximilian N.
    ;
    Daylan, Tansu
    ;
    Murgas, Felipe
    ;
    Parviainen, Hannu
    ;
    Esparza-Borges, Emma
    ;
    Crouzet, Nicolas
    ;
    Narita, Norio
    ;
    Fukui, Akihiko
    ;
    Kawauchi, Kiyoe
    ;
    Watanabe, Noriharu
    ;
    Johnson, Marshall
    ;
    Otten, Gilles
    ;
    Jan-Talens, Geert
    ;
    Cabot, Samuel
    ;
    Fischer, Debra
    ;
    Grundahl, Frank
    ;
    Fredslun-Andersen, Mads
    ;
    Jessen-Hansen, Jens
    ;
    Pallé, Pere
    ;
    Shporer, Avi
    ;
    Ciardi, David
    ;
    Clark, Jake
    ;
    Wittenmyer, Robert
    ;
    Wright, Duncan
    ;
    Horner, Jonathan
    ;
    Collins, Karen
    ;
    Jensen, Eric
    ;
    Kielkopf, John
    ;
    Schwarz, Richard
    ;
    Srdoc, Gregor
    ;
    Yilmaz, Mesut
    ;
    Senavci, Hakan
    ;
    Diamond, Brendan
    ;
    Harbeck, Daniel
    ;
    Komacek, Thaddeus
    ;
    Smith, Jeffrey
    ;
    Wang, Songhu
    ;
    Eastman, Jason
    ;
    Stassun, Keivan
    ;
    Latham, David
    ;
    Vanderspek, Roland
    ;
    Seager, Sara
    ;
    Winn, Joshua
    ;
    Jenkins, Jon
    ;
    Louie, Dana
    ;
    Bouma, Luke
    ;
    Twicken, Joseph
    ;
    Levine, Alan
    ;
    McLean, Brian
    We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA5 b (HD 201033b), first detected by NASA’s Transiting Exoplanet Survey Satellite mission (TESS) and the Multisite All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 ± 1.1 m s−1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of Mp = 3.12 ± 0.18 MJ (990 ± 60 M⊕), an inflated radius of Rp = 1.49 ± 0.05 RJ (16.7 ± 0.6 R⊕), and an orbital period of P = 2.650237 ± 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ( -+ 0.29 0.19 0.32 Gyr) Am type star with = -+ Teff 7690 250 400 K, resulting in a highly irradiated planet with an incident flux of á ñ= ´ - + F 7.24 0.64 0.68 109 erg s−1 cm−2 ( - + 5300 470 SÅ 500 ) and an equilibrium temperature of Teq = 2370 ± 70 K. TESS photometry also reveals a secondary eclipse with a depth of - + 127 5 4 ppm as well as the full phase curve of the planet’s thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as Tday = 3004 ± 64 K and Tnight = 2583 ± 63 K, the second hottest measured nightside temperature. The planet’s low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey.