Research Outputs

Now showing 1 - 1 of 1
  • Publication
    TESS-Keck Survey. V. twin Sub-Neptunes transiting the nearby G Star HD 63935
    (IOP Publishing, 2021) ;
    Scarsdale, Nicholas
    ;
    Murphy, Joseph
    ;
    Batalha, Natalie
    ;
    Crossfield, Ian
    ;
    Dressing, Courtney
    ;
    Fulton, Benjamin
    ;
    Howard, Andrew
    ;
    Huber, Daniel
    ;
    Isaacson, Howard
    ;
    Kane, Stephen
    ;
    Petigura, Erik
    ;
    Robertson, Paul
    ;
    Roy, Arpita
    ;
    Weiss, Lauren
    ;
    Beard, Corey
    ;
    Behmard, Aida
    ;
    Chontos, Ashley
    ;
    Christiansen, Jessie
    ;
    Ciardi, David
    ;
    Claytor, Zachary
    ;
    Collins, Karen
    ;
    Collins, Kevin
    ;
    Dai, Fei
    ;
    Dalba, Paul
    ;
    Dragomir, Diana
    ;
    Fetherolf, Tara
    ;
    Fukui, Akihiko
    ;
    Giacalone, Steven
    ;
    Gonzales, Erica
    ;
    Hill, Michelle
    ;
    Hirsch, Lea
    ;
    Jensen, Eric
    ;
    Kosiarek, Molly
    ;
    de Leon, Jerome
    ;
    Lubin, Jack
    ;
    Lund, Michael
    ;
    Luque, Rafael
    ;
    Mayo, Andrew
    ;
    Močnik, Teo
    ;
    Mori, Mayuko
    ;
    Narita, Norio
    ;
    Nowak, Grzegorz
    ;
    Pallé, Enric
    ;
    Rosenthal, Lee
    ;
    Rubenzahl, Ryan
    ;
    Schlieder, Joshua
    ;
    Shporer, Avi
    ;
    Stassun, Keivan
    ;
    Twicken, Joe
    ;
    Wang, Gavin
    ;
    Yahalomi, Daniel
    ;
    Jenkins, Jon
    ;
    Latham, David
    ;
    Ricker, George
    ;
    Seager, S.
    ;
    Vanderspek, Roland
    ;
    Winn, Joshua
    We present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD 63935, a bright (V = 8.6 mag), Sun-like (Teff = 5560 K) star at 49 pc. TESS identified the first planet, HD 63935 b (TOI509.01), in Sectors 7 and 34. We identified the second signal (HD 63935 c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600 ± 0.007 and 21.40 ± 0.0019 days, radii of 2.99 ± 0.14 and 2.90 ± 0.13 R⊕, and masses of 10.8 ± 1.8 and 11.1 ± 2.4 M⊕. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey’s efforts to choose the best targets for James Webb Space Telescope atmospheric followup. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6 R⊕ < Rp < 4 R⊕), moderately irradiated (100 F⊕ < Fp < 1000 F⊕) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets.