Options
Dr. Rabus, Markus
Nombre de publicación
Dr. Rabus, Markus
Nombre completo
Rabus, Markus
Facultad
Email
mrabus@ucsc.cl
ORCID
5 results
Research Outputs
Now showing 1 - 5 of 5
- PublicationDeep drilling in the time domain with DECam: Survey characterization(Oxford University Press, 2023)
; ;Graham, Melissa ;Knop, Robert ;Kennedy, Thomas ;Nugent, Peter E ;Bellm, Eric ;Catelan, Márcio ;Patel, Avi ;Smotherman, Hayden ;Soraisam, Monika ;Stetzler, Steven ;Aldoroty, Lauren ;Awbrey, Autumn ;Baeza-Villagra, Karina ;Bernardinelli, Pedro ;Bianco, Federica ;Brout, Dillon ;Clarke, Riley ;Clarkson, William ;Collett, Thomas ;Davenport, James ;Fu, Shenming ;Gizis, John E ;Heinze, Ari ;Hu, Lei ;Jha, Saurabh W ;Jurić, Mario ;Kalmbach, Bryce ;Kim, Alex ;Lee, Chien-Hsiu ;Lidman, Chris ;Magee, Mark ;Martínez-Vázquez, Clara ;Matheson, Thomas ;Narayan, Gautham ;Palmese, Antonella ;Phillips, Christopher ;Rest, Armin ;Rodríguez-Segovia, Nicolás ;Street, Rachel ;Vivas, Katherina ;Wang, Lifan ;Wolf, NicholasYang, JiawenThis paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, >4000 images covering 21 deg2 (seven DECam pointings), with ∼40 epochs (nights) per field and 5 to 6 images per night per filter in g, r, i, and/or z have become publicly available (the proprietary period for this program is waived). We describe the real-time difference-image pipeline and how alerts are distributed to brokers via the same distribution system as the Zwicky Transient Facility (ZTF). In this paper, we focus on the two extragalactic deep fields (COSMOS and ELAIS-S1) characterizing the detected sources, and demonstrating that the survey design is effective for probing the discovery space of faint and fast variable and transient sources. We describe and make publicly available 4413 calibrated light curves based on difference-image detection photometry of transients and variables in the extragalactic fields. We also present preliminary scientific analysis regarding the Solar system small bodies, stellar flares and variables, Galactic anomaly detection, fast-rising transients and variables, supernovae, and active Galactic nuclei. - PublicationTESS-Keck Survey. V. twin Sub-Neptunes transiting the nearby G Star HD 63935(IOP Publishing, 2021)
; ;Scarsdale, Nicholas ;Murphy, Joseph ;Batalha, Natalie ;Crossfield, Ian ;Dressing, Courtney ;Fulton, Benjamin ;Howard, Andrew ;Huber, Daniel ;Isaacson, Howard ;Kane, Stephen ;Petigura, Erik ;Robertson, Paul ;Roy, Arpita ;Weiss, Lauren ;Beard, Corey ;Behmard, Aida ;Chontos, Ashley ;Christiansen, Jessie ;Ciardi, David ;Claytor, Zachary ;Collins, Karen ;Collins, Kevin ;Dai, Fei ;Dalba, Paul ;Dragomir, Diana ;Fetherolf, Tara ;Fukui, Akihiko ;Giacalone, Steven ;Gonzales, Erica ;Hill, Michelle ;Hirsch, Lea ;Jensen, Eric ;Kosiarek, Molly ;de Leon, Jerome ;Lubin, Jack ;Lund, Michael ;Luque, Rafael ;Mayo, Andrew ;Močnik, Teo ;Mori, Mayuko ;Narita, Norio ;Nowak, Grzegorz ;Pallé, Enric ;Rosenthal, Lee ;Rubenzahl, Ryan ;Schlieder, Joshua ;Shporer, Avi ;Stassun, Keivan ;Twicken, Joe ;Wang, Gavin ;Yahalomi, Daniel ;Jenkins, Jon ;Latham, David ;Ricker, George ;Seager, S. ;Vanderspek, RolandWinn, JoshuaWe present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD 63935, a bright (V = 8.6 mag), Sun-like (Teff = 5560 K) star at 49 pc. TESS identified the first planet, HD 63935 b (TOI509.01), in Sectors 7 and 34. We identified the second signal (HD 63935 c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600 ± 0.007 and 21.40 ± 0.0019 days, radii of 2.99 ± 0.14 and 2.90 ± 0.13 R⊕, and masses of 10.8 ± 1.8 and 11.1 ± 2.4 M⊕. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey’s efforts to choose the best targets for James Webb Space Telescope atmospheric followup. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6 R⊕ < Rp < 4 R⊕), moderately irradiated (100 F⊕ < Fp < 1000 F⊕) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets. - PublicationA search for transit timing variations in the HATS-18 planetary system(Monthly Notices of the Royal Astronomical Society, 2022)
;Southworth, John ;Barker, A. J. ;Hinse, T. C. ;Jongen, Y. ;Dominik, M. ;Jørgensen, U. G. ;Longa-Peña, P. ;Sajadian, S. ;Snodgrass, C. ;Tregloan-Reed, J. ;Bach-Møller, N. ;Bonavita, M. ;Bozza, V. ;Burgdorf, M. J. ;Jaimes, R. Figuera ;Helling, Ch. ;Hitchcock, J. A. ;Hundertmark, M. ;Khalouei, E. ;Korhonen, H. ;Mancini, L. ;Peixinho, N. ;Rahvar, S.; ;Skottfelt, J.Spyratos, P.HATS-18 b is a transiting planet with a large mass and a short orbital period, and is one of the best candidates for the detection of orbital decay induced by tidal effects. We present e xtensiv e photometry of HATS-18 from which we measure 27 times of mid-transit. Two further transit times were measured from data from the Transiting Exoplanet Survey Satellite ( TESS ) and three more taken from the literature. The transit timings were fitted with linear and quadratic ephemerides and an upper limit on orbital decay was determined. This corresponds to a lower limit on the modified stellar tidal quality factor of Q > 10 5 . 11 ±0 . 04 . This is at the cusp of constraining the presence of enhanced tidal dissipation due to internal gravity waves. We also refine the measured physical properties of the HATS-18 system, place upper limits on the masses of third bodies, and compare the relative performance of TESS and the 1.54 m Danish Telescope in measuring transit times for this system. - PublicationTOI-1431b/MASCARA-5b: A highly irradiated Ultrahot Jupiter orbiting one of the hottest and brightest known exoplanet host stars(IOP Publishing, 2021)
; ;Addison, Brett ;Knudstrup, Emil ;Wong, Ian ;Hébrard, Guillaume ;Dorval, Patrick ;Snellen, Ignas ;Albrecht, Simon ;Bello-Arufe, Aaron ;Almenara, Jose-Manuel ;Boisse, Isabelle ;Bonfils, Xavier ;Dalal, Shweta ;Demangeon, Olivier ;Hoyer, Sergio ;Kiefer, Flavien ;Santos, N. C. ;Nowak, Grzegorz ;Luque, Rafael ;Stangret, Monika ;Palle, Enric ;Tronsgaard, René ;Antoci, Victoria ;Buchhave, Lars A. ;Günther, Maximilian N. ;Daylan, Tansu ;Murgas, Felipe ;Parviainen, Hannu ;Esparza-Borges, Emma ;Crouzet, Nicolas ;Narita, Norio ;Fukui, Akihiko ;Kawauchi, Kiyoe ;Watanabe, Noriharu ;Johnson, Marshall ;Otten, Gilles ;Jan-Talens, Geert ;Cabot, Samuel ;Fischer, Debra ;Grundahl, Frank ;Fredslun-Andersen, Mads ;Jessen-Hansen, Jens ;Pallé, Pere ;Shporer, Avi ;Ciardi, David ;Clark, Jake ;Wittenmyer, Robert ;Wright, Duncan ;Horner, Jonathan ;Collins, Karen ;Jensen, Eric ;Kielkopf, John ;Schwarz, Richard ;Srdoc, Gregor ;Yilmaz, Mesut ;Senavci, Hakan ;Diamond, Brendan ;Harbeck, Daniel ;Komacek, Thaddeus ;Smith, Jeffrey ;Wang, Songhu ;Eastman, Jason ;Stassun, Keivan ;Latham, David ;Vanderspek, Roland ;Seager, Sara ;Winn, Joshua ;Jenkins, Jon ;Louie, Dana ;Bouma, Luke ;Twicken, Joseph ;Levine, AlanMcLean, BrianWe present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA5 b (HD 201033b), first detected by NASA’s Transiting Exoplanet Survey Satellite mission (TESS) and the Multisite All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 ± 1.1 m s−1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of Mp = 3.12 ± 0.18 MJ (990 ± 60 M⊕), an inflated radius of Rp = 1.49 ± 0.05 RJ (16.7 ± 0.6 R⊕), and an orbital period of P = 2.650237 ± 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ( -+ 0.29 0.19 0.32 Gyr) Am type star with = -+ Teff 7690 250 400 K, resulting in a highly irradiated planet with an incident flux of á ñ= ´ - + F 7.24 0.64 0.68 109 erg s−1 cm−2 ( - + 5300 470 SÅ 500 ) and an equilibrium temperature of Teq = 2370 ± 70 K. TESS photometry also reveals a secondary eclipse with a depth of - + 127 5 4 ppm as well as the full phase curve of the planet’s thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as Tday = 3004 ± 64 K and Tnight = 2583 ± 63 K, the second hottest measured nightside temperature. The planet’s low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey. - PublicationThree low-mass companions around aged stars discovered by TESS(Royal Astronomical Society., 2023)
;Zitao Lin ;Tianjun Gan ;Sharon X Wang ;Avi Shporer; ;George Zhou ;Angelica Psaridi ;François Bouchy ;Allyson Bieryla ;David W Latham ;Shude Mao ;Keivan G Stassun ;Coel Hellier ;Steve B Howell ;Carl Ziegler ;Douglas A Caldwell ;Catherine A Clark ;Karen A Collins ;Jason L Curtis ;Jacqueline K Faherty ;Crystal L Gnilka ;Samuel K Grunblatt ;Jon M Jenkins ;Marshall C Johnson ;Nicholas Law ;Monika Lendl ;Colin Littlefield ;Michael B Lund ;Mikkel N Lund ;Andrew W Mann ;Scott McDermott ;Lokesh Mishra ;Dany Mounzer ;Martin Paegert ;Tyler Pritchard ;George R Ricker ;Sara Seager ;Gregor Srdoc ;Qinghui Sun ;Jiaxin Tang ;Stéphane Udry ;Roland Vanderspek ;David Watanabe ;Joshua N WinnJie YuWe report the discovery of three transiting low-mass companions to aged stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass limit (TOI-1608b and TOI-2521b). These three systems were first identified using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has a radius of 1.05 ± 0.04 RJ, a mass of 69.9 ± 2.3 MJ and an orbital period of 7.71 d. TOI-1608b has a radius of 1.21 ± 0.06 RJ, a mass of 90.7 ± 3.7 MJ and an orbital period of 2.47 d. TOI-2521b has a radius of 1.01 ± 0.04 RJ, a mass of 77.5 ± 3.3 MJ, and an orbital period of 5.56 d. We found all these low-mass companions are inflated. We fitted a relation between radius, mass, and incident flux using the sample of known transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation between the flux and the radius for brown dwarfs and for low-mass stars that is weaker than the correlation observed for giant planets. We also found that TOI-1608 and TOI-2521 are very likely to be spin-orbit synchronized, leading to the unusually rapid rotation of the primary stars considering their evolutionary stages. Our estimates indicate that both systems have much shorter spin-orbit synchronization time-scales compared to their ages. These systems provide valuable insights into the evolution of stellar systems with brown dwarf and low-mass stellar companions influenced by tidal effects.