Research Outputs

Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Graphene modified “black {0 0 1}TiO2” nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism

2022, Dr. Valdes-Morales, Hector, Pugazhenthiran, Nalandhiran, Mangalaraja, Ramalinga, Sathishkumar, Panneerselvam, Murugesan, Sepperumal

In this work, crystal facets, bandgap, size and shape of reduced graphene oxide (rGO) modified anatase {001} black TiO2 nanosheets (rGO-B-TiO2 NSTs) were tailored for the photocatalytic oxidation of ethylene under high humidity content. XRD, Raman and HR-TEM analyses confirm that rGO-B-TiO2 NSTs have a 94 % of exposed {001} facets with high number of oxygen vacancies. In addition, rGO-B-TiO2 NSTs exhibit increased values of surface area and porosity compared to its pristine form. A 48 and 34 μmol g− 1 of ethylene are adsorbed at the surface of rGO-B-TiO2 NSTs in the absence and in the presence of humidity, respectively. In addition, operando DRIFTS analyses provide the insight of surface interactions between ethylene molecules and adsorption sites of rGO-B-TiO2 NSTs. The photocatalytic removal efficiencies of the synthesized materials under both UV and visible light irradiation proceed as follows: rGO-B-TiO2 NSTs > B-TiO2 NSTs > TiO2 NSTs > commercial TiO2 NPs. Further, ethylene is very quickly photocatalytic oxidized when rGO-B-TiO2 NSTs is applied under UV light irradiation, having a 72 and 92 % ethylene removal in the absence and in the presence of humidity, respectively. Moreover, a 48 and 58 % of ethylene removal takes place in the absence and presence of humidity under visible light irradiation, respectively. Results indicate that rGO-B-TiO2 NSTs boost the photocatalytic activity through their virtue of visible-light absorption properties (Bandgap = 2.61 eV) and the rapid electron-hole separation at the rGO {001} black TiO2 NSTs interfaces. Such findings are confirmed through UV-visible diffused reflectance, photoelectrochemical and photoluminescence analyses. Nanosheets made of rGO modified {001} black TiO2 could be used as an effective photocatalyst for the removal of ethylene from large volume fruit storage areas by exploiting a simple light source in the presence of high content of humidity.

No Thumbnail Available
Publication

Tailored engineering of rod-shaped core@shell ZnO@CeO2 nanostructures as an optical stimuli-responsive in sunscreen cream

2024, Dr. Valdes-Morales, Hector, Sahlevani, Saeed, Pandiyarajan, Thangaraj, Arulraj, Arunachalam, Sanhueza, Felipe, Contreras, David, Gracia-Pinilla, M., Mangalaraja, Ramalinga

The catalytic efficiency of the materials can be boosted with the selective designing (nanostructures) including the core@shell which aids in attaining the separation of photoinduced charge carriers. However, to effectively separate the carriers and reduce the rate of recombination, tuning the thickness of the shell wall is a vital one. The one-dimensional (1D) rod-like shell wall-controlled ZnO@CeO2 core@shell structures were successfully prepared via co-precipitation and hydrothermal methods using the hexamethylenetetramine (HMTA) as a reagent. The CeO2 shell wall thickness was fine-tuned between 15 and 70 nm with a variation in the concentration of HMTA reagent. The results revealed that the concentration of HMTA played a significant role in the formation of ZnO@CeO2 core@shell structures and in tuning their thickness. The FE-SEM images evidenced the core-shell structures formation with the specific thickness and uniformity. The HR-TEM images confirmed the homogeneity and regular form of the shell thickness. The unit cell and crystallite size were identified from the XRD analysis. The constructed core-shell structures were further employed in the formula of the prototypes of sunscreen and their photoprotective performance was analyzed in the view to cut the solar light irradiation in a new sunscreen formulation. The developed core-shell ZnO@CeO2 structures showed the excellent optical absorption in both the UV as well as visible regions.

No Thumbnail Available
Publication

Goethite (α-FeOOH) nanoparticles wrapped on reduced graphene oxide nanosheet for sensitive electrochemical detection of arsenic(III)

2023, Dr. Valdes-Morales, Hector, Vinoth, Victor, Shanmugaraj, Krishnamoorthy, Pugazhenthiran, Nalandhiran, Salvo, Christopher, Anandan, Sambandam, Mangalaraja, Ramalinga

The goethite (α-FeOOH) nanoparticles were wrapped on the reduced graphene oxide (rGO) to synthesize the α-FeOOH/rGO nanocomposites. The nanocomposites (NCs) were initially examined for their optical, structural, and morphological properties. The XRD data obtained the crystallite size of the α-FeOOH, showed that the average crystal size for pristine α-FeOOH and α-FeOOH/rGO nanocomposites were about 85 and 90 nm, respectively. The transmission electron microscope confirmed the nanoparticles (NPs) were evenly distributed throughout the reduced graphene oxide sheets. The nanocomposites improved glassy carbon electrodes (GCE), making them efficient sensors for detecting the arsenic(III) (As+3) in a pH 5 phosphate buffer solution with an Ag/AgCl reference electrode. The detection limit for As+3 was 0.07 μgL−1 and the resulting sensitivity was 0.39 μA−1 μgL−1 in the linear dynamic range of 0.1–10 μgL−1. The α-FeOOH/rGO/GCE was more sensitive than its original and showed a synergistic effect due to the influence of α-FeOOH on the properties of rGO. The α-FeOOH/rGO NCs-modified GCE electrode performed as a promising sensor, by separating the common interfering ions. Moreover, the modified electrode exhibited remarkable stability, repeatability, and potential real-time application towards the detection of arsenic(III). Additionally, the proposed approach has been successfully applied to the detection of As+3 in the real water sample.