Options
Dr. Valdes-Morales, Hector
Research Outputs
Oxygen vacancies in nano-sized TiO2 anatase nanoparticles
2019, Drozd, Valeriya S., Zybina, Nadezhda A., Abramova, Kristina E., Parfenov, Mikhail Yu, Kumar, Umesh, Valdes-Morales, Hector, Smirniotis, Panagiotis G., Vorontsov, Alexander V.
Anatase nanoparticles containing surface oxygen vacancies (VO) and Ti3+ are of great importance for applications in photocatalysis, batteries, catalysis, sensors among other uses. The properties of VO and their dependence on the size of nanoparticles are of great research interest and could allow obtaining advanced functional materials. In this work, a complete set of oxygen vacancies in an anatase nanoparticle of size 1.1 nm was investigated and compared to those of a twice larger nanoparticle, having the same shape and surface hydroxylation pattern. It turned out that the decrease in the size of the anatase nanoparticle strongly facilitated creation of surface oxygen vacancies and Ti3+. After their creation, oxygen vacancies undergo three transformation paths — (1) small repulsion of surrounding Ti cations with retention of the vacancy, (2) transfer of oxygen anion, leading to the movement of oxygen vacancy to a more stable position, and (3) collapse of oxygen vacancy accompanied by structure deformation towards Magneli-like phase.
Design of active sites in zeolite catalysts using modern semiempirical methods: the case of mordenite
2019, Vorontsov, Alexander V., Valdes-Morales, Hector, Smirniotis, Panagiotis G.
Zeolites are widely used for numerous processes for production of a vast number of chemicals, fuels and commercial goods. Preparation of zeolite catalysts that have improved selectivity for the desired products, operate at lower temperature and possess increased stability is therefore of great interest. The key to such improved zeolite catalysts is in the design of active sites and facilitation of mass transfer via optimization of the porous structure. At the same time, undesirable sites that inhibit desirable properties of the active sites need to be removed or blocked. The strength and structure of either the Brønsted or Lewis acid sites, directly determines their catalytic activity and selectivity for each reaction. In the present study, the structure and acidity of active sites in zeolites are investigated for the example of mordenite using modern semiempirical methods pm7 and scc-dftb (dftb2). Models AlHSi95O192 and Al2H2Si94O192 are used for Brønsted acid sites and Al2Si94O191 for Lewis acid sites. In agreement with previous studies, the stability of T1, T2, T3 and T4 sites is similar. Many different configurations of pair-wise located Al atoms were studied. In the present work it was found that some of the pair-wise located Al atoms possess Brønsted acid sites with strength much higher than that for single Brønsted acid sites. However, since their stability is not the highest among other double sites, special preparation methods need to be developed for selectively obtaining these very active sites. The stability of different Lewis acid sites is also considered.