Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Characterizing the spatial correlation of coseismic slip distributions: a data driven Bayesian approach
    (The Royal Astronomical Society, 2025)
    Marchant-Cáceres, G
    ;
    ;
    Becerra-Carreño, V
    ;
    Crempien, J G F
    ;
    Morales-Yañez, C
    The spatial correlation of coseismic slip is a necessary input for generating stochastic seismic rupture models, which are commonly used in seismic and tsunami hazard assessments. To date, the spatial correlation of individual earthquakes is characterized using finite fault models by finding the combination of parameters of a von Kármán autocorrelation function that best fits the observed autocorrelation function of the finite fault model. However, because a priori spatial correlation conditions (i.e. not in the data) are generally applied in finite fault model generation, the results obtained using this method may be biased. Additionally, robust uncertainty estimates for spatial correlations of coseismic slip are generally not performed. Considering these limitations in the classic method, here, a method is developed based on a Bayesian formulation of Finite Fault Inversion (FFI) with positivity constraints. This method allows for characterizing the spatial correlation of coseismic slip and its uncertainties for an earthquake by using samples of coseismic slip from a posterior probability density function (PDF). Furthermore, a Bayesian model selection criterion called Akaike Bayesian Information Criterion (ABIC) is applied to objectively choose between different prior spatial correlation schemes before computing the posterior, to reduce subjectivity due to this prior condition. The ABIC is calculated using an approximate analytical expression of Bayesian evidence. The method is applied to simulated P waves, demonstrating that model selection allows for objectively estimating the most suitable prior spatial correlation scheme in FFI. Additionally, the target spatial correlation of coseismic slip is accurately recovered using samples from the posterior PDF, as well as their uncertainties. Moreover, in the simulated experiment, it is shown that a non-robust choice of the prior spatial correlation scheme can significantly bias the estimated spatial correlations of coseismic slip. We apply our method to observed P waves from the 2015, Illapel earthquake ($M_{\rm w} = 8.3$), finding that the spatial correlation of coseismic slip of this earthquake is better described by a von Kármán ACF, with mean correlation lengths of around 47 km and Hurst parameter of 0.58. We conclude that using our method reduces biases associated with prior spatial correlation conditions and allows for robust estimation of spatial correlations of coseismic slip and their uncertainties.
  • Thumbnail Image
    Publication
    Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama Seismic Gap
    (Geophysical Research Letters, 2023)
    González-Vidal, Diego
    ;
    Moreno, Marcos
    ;
    Sippl, Christian
    ;
    Baez, Juan
    ;
    Ortega-Culaciati, Francisco
    ;
    Dietrich, Lange
    ;
    Tilmann, Frederik
    ;
    Socquet, Anne
    ;
    Jan, Bolte
    ;
    Hormazabal, Joaquin
    ;
    Langlais, Mickael
    ;
    Morales-Yáñez,Catalina
    ;
    Melnick,Danie
    ;
    ;
    Münchmeyer, Jannes
    ;
    Araya, Rodolfo
    ;
    Heit, Benjamin.
    We deployed a dense geodetic and seismological network in the Atacama seismic gap in Chile. We derive a microseismicity catalog of >30,000 events, time series from 70 GNSS stations, and utilize a transdimensional Bayesian inversion to estimate interplate locking. We identify two highly locked regions of different sizes whose geometries appear to control seismicity patterns. Interface seismicity concentrates beneath the coastline, just downdip of the highest locking. A region with lower locking (27.5°S–27.7°S) coincides with higher seismicity levels, a high number of repeating earthquakes and events extending toward the trench. This area is situated where the Copiapó Ridge is subducted and has shown previous indications of both seismic and aseismic slip, including an earthquake sequence in 2020. While these findings suggest that the structure of the downgoing oceanic plate prescribes patterns of interplate locking and seismicity, we note that the Taltal Ridge further north lacks a similar signature.
  • Thumbnail Image
    Publication
    B-value variations in the Central Chile seismic gap assessed by a Bayesian transdimensional approach
    (Springer Nature Limited, 2022) ;
    Morales-Yáñez, Catalina
    ;
    Bustamante, Luis
    ;
    Sippl, Christian
    ;
    Moreno, Marcos
    The b-value can be used to characterize the seismic activity for a given earthquake catalog and provide information on the stress level accumulated at active faults. Here we develop an algorithm to objectively estimate variations of b-value along one arbitrary dimension. To this end, we employ a Bayesian transdimensional approach where the seismic domains will be self-defined according to information in the seismic catalog. This makes it unnecessary to prescribe the location and extent of domains, as it is commonly done. We first show the algorithm’s robustness by performing regressions from synthetic catalogs, recovering the target models with great accuracy. We also apply the algorithm to a microseismicity catalog for the Central Chile region. This segment is considered a seismic gap where the last major earthquake with shallow slip was in 1730. Our results illuminate the downdip limit of the seismogenic zone and the transition to intraslab seismicity. In the along-strike direction, low b-value coincides with the extent of locked asperities, suggesting a high-stress loading at the Central Chile seismic gap. Our results indicate the reliability of the Bayesian transdimensional method for capturing robust b-value variations, allowing us to characterize the mechanical behavior on the plate interface of subduction zones.