Research Outputs

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    Relation between oceanic plate structure, patterns of interplate locking and microseismicity in the 1922 Atacama Seismic Gap
    (Geophysical Research Letters, 2023)
    González-Vidal, Diego
    ;
    Moreno, Marcos
    ;
    Sippl, Christian
    ;
    Baez, Juan
    ;
    Ortega-Culaciati, Francisco
    ;
    Dietrich, Lange
    ;
    Tilmann, Frederik
    ;
    Socquet, Anne
    ;
    Jan, Bolte
    ;
    Hormazabal, Joaquin
    ;
    Langlais, Mickael
    ;
    Morales-Yáñez,Catalina
    ;
    Melnick,Danie
    ;
    ;
    Münchmeyer, Jannes
    ;
    Araya, Rodolfo
    ;
    Heit, Benjamin.
    We deployed a dense geodetic and seismological network in the Atacama seismic gap in Chile. We derive a microseismicity catalog of >30,000 events, time series from 70 GNSS stations, and utilize a transdimensional Bayesian inversion to estimate interplate locking. We identify two highly locked regions of different sizes whose geometries appear to control seismicity patterns. Interface seismicity concentrates beneath the coastline, just downdip of the highest locking. A region with lower locking (27.5°S–27.7°S) coincides with higher seismicity levels, a high number of repeating earthquakes and events extending toward the trench. This area is situated where the Copiapó Ridge is subducted and has shown previous indications of both seismic and aseismic slip, including an earthquake sequence in 2020. While these findings suggest that the structure of the downgoing oceanic plate prescribes patterns of interplate locking and seismicity, we note that the Taltal Ridge further north lacks a similar signature.
  • Thumbnail Image
    Publication
    Automatic Detection of Slow Slip Events Using the PICCA: Application to Chilean GNSS Data
    (Frontiers in Earth Science, 2021)
    Donoso, F.
    ;
    Moreno, M.
    ;
    Ortega Culaciati, F.
    ;
    Bedford, J.
    ;
    The detection of transient events related to slow earthquakes in GNSS positional time series is key to understanding seismogenic processes in subduction zones. Here, we present a novel Principal and Independent Components Correlation Analysis (PICCA) method that allows for the temporal and spatial detection of transient signals. The PICCA is based on an optimal combination of the principal (PCA) and independent component analysis (ICA) of positional time series of a GNSS network. We assume that the transient signal is mostly contained in one of the principal or independent components. To detect the transient, we applied a method where correlations between sliding windows of each PCA/ICA component and each time series are calculated, obtaining the stations affected by the slow slip event and the onset time from the resulting correlation peaks. We first tested and calibrated the method using synthetic signals from slow earthquakes of different magnitudes and durations and modelled their effect in the network of GNSS stations in Chile. Then, we analyzed three transient events related to slow earthquakes recorded in Chile, in the areas of Iquique, Copiapó, and Valparaíso. For synthetic data, a 150 days event was detected using the PCA-based method, while a 3 days event was detected using the ICA-based method. For the real data, a long-term transient was detected by PCA, while a 16 days transient was detected by ICA. It is concluded that simultaneous use of both signal separation methods (PICCA) is more effective when searching for transient events. The PCA method is more useful for long-term events, while the ICA method is better suited to recognize events of short duration. PICCA is a promising tool to detect transients of different characteristics in GNSS time series, which will be used in a next stage to generate a catalog of SSEs in Chile
  • Thumbnail Image
    Publication
    B-value variations in the Central Chile seismic gap assessed by a Bayesian transdimensional approach
    (Springer Nature Limited, 2022) ;
    Morales-Yáñez, Catalina
    ;
    Bustamante, Luis
    ;
    Sippl, Christian
    ;
    Moreno, Marcos
    The b-value can be used to characterize the seismic activity for a given earthquake catalog and provide information on the stress level accumulated at active faults. Here we develop an algorithm to objectively estimate variations of b-value along one arbitrary dimension. To this end, we employ a Bayesian transdimensional approach where the seismic domains will be self-defined according to information in the seismic catalog. This makes it unnecessary to prescribe the location and extent of domains, as it is commonly done. We first show the algorithm’s robustness by performing regressions from synthetic catalogs, recovering the target models with great accuracy. We also apply the algorithm to a microseismicity catalog for the Central Chile region. This segment is considered a seismic gap where the last major earthquake with shallow slip was in 1730. Our results illuminate the downdip limit of the seismogenic zone and the transition to intraslab seismicity. In the along-strike direction, low b-value coincides with the extent of locked asperities, suggesting a high-stress loading at the Central Chile seismic gap. Our results indicate the reliability of the Bayesian transdimensional method for capturing robust b-value variations, allowing us to characterize the mechanical behavior on the plate interface of subduction zones.
  • Thumbnail Image
    Publication
    Effects of earthquake spatial slip correlation on variability of tsunami potential energy and intensities
    (Springer Nature Limited, 2020) ;
    Crempien, Jorge
    ;
    Urrutia, Alejandro
    ;
    Cienfuegos, Rodrigo
    Variability characterization of tsunami generation is quintessential for proper hazard estimation. For this purpose we isolate the variability which stems solely from earthquake spatial source complexity, by simulating tsunami inundation in the near-field with a simplified digital elevation model, using nonlinear shallow water equations. For earthquake rupture, we prescribe slip to have a log-normal probability distribution function and von Kármán correlation between each subfault pair, which we assume decreases with increasing euclidean distance between them. From the generated near-field inundation time-series, emanating from several thousand synthetic slip realizations across a magnitude 9 earthquake, we extract several tsunami intensity measures at the coast. Results show that all considered tsunami intensity measures and potential energy variability increase with increasing spatial slip correlations. Finally, we show that larger spatial slip correlations produce higher tsunami intensity measure exceedance probabilities within the near-field, which highlights the need to quantify the uncertainty of earthquake spatial slip correlation.
  • Thumbnail Image
    Publication
    Microseismicity appears to outline highly coupled regions on the Central Chile megathrust
    (Journal of Geophysical Research: Solid Earth, 2021)
    Sippl, C.
    ;
    Moreno, M.
    ;
    We compiled a novel microseismicity catalog for the Central Chile megathrust (29°–35°S), comprising 8,750 earthquakes between April 2014 and December 2018. These events describe a pattern of three trenchward open half-ellipses, consisting of a continuous, coast-parallel seismicity band at 30–45 km depth, and narrow elongated seismicity clusters that protrude to the shallow megathrust and separate largely aseismic regions along strike. To test whether these shapes could outline highly coupled regions (“asperities”) on the megathrust, we invert GPS displacement data for interplate locking. The best-fit locking model does not show good correspondence to seismicity, possibly due to lacking resolution. When we prescribe high locking inside the half-ellipses, however, we obtain models with similar data fits that are preferred according to the Bayesian Information Criterion (BIC). We thus propose that seismicity on the Central Chile megathrust may outline three adjacent highly coupled regions, two of them located between the rupture areas of the 2010 Maule and the 2015 Illapel earthquakes, a segment of the Chilean margin that may be in a late interseismic stage of the seismic cycle.