Research Outputs

Now showing 1 - 2 of 2
  • Publication
    An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios
    (Coastal Engineering Journal, 2020) ; ;
    Becerra, Ignacio
    ;
    GonzĂ¡lez, Juan
    Central Chile is exposed to tsunami hazard, and large earthquakes and tsunamis have occurred over the last 500 years. Tsunami hazard analysis in Chile has been traditionally implemented by means of a deterministic approach, which is based on historical events and uniform slip distribution. The objective of the present study is to improve tsunami hazard analysis in central Chile (30°S to 38°S). To encompass the purpose, stochastic earthquake scenarios of magnitude Mw 8.8 to 9.2 were generated. Two different sets of stochastic tsunami scenarios were selected by means of the Stochastic Reduced Order Model (SROM), which were applied to Quintero bay to perform a Probabilistic Tsunami Hazard Analysis (PTHA). The results showed that PTHA of Quintero bay from stochastic tsunami scenarios agrees with paleotsunami records in the bay, while a deterministic tsunami scenario underestimated the hazard. Two sets (50 and 100 scenarios, respectively) give similar results when smaller return periods are analyzed. However, for larger return periods (Unknown node type: font 2000 yr) the set of 100 scenarios show better results consistent with previous paleoseismological findings. The methodology implemented here can be replicated in other seismic regions in Chile as well as in other active subduction zones, thus, both near field and far field events can be analyzed.
  • Publication
    Sea surface network optimization for tsunami forecasting in the near field: Application to the 2015 Illapel earthquake
    (Oxford University Press, 2020)
    Navarrete, P.
    ;
    Cienfuegos, Rodrigo
    ;
    Satake, K.
    ;
    Wang, Y.
    ;
    Urrutia, A.
    ;
    ;
    CatalĂ¡n, P. A.
    ;
    Crempien, J.
    ;
    Mulia, I.
    We propose a method for defining the optimal locations of a network of tsunameters in view of near real-time tsunami forecasting using sea surface data assimilation in the near and middle fields, just outside of the source region. The method requires first the application of the empirical orthogonal function analysis to identify the potential initial locations, followed by an optimization heuristic that minimizes a cost-benefit function to narrow down the number of stations. We apply the method to a synthetic case of the 2015 Mw8.4 Illapel Chile earthquake and show that it is possible to obtain an accurate tsunami forecast for wave heights at near coastal points, not too close to the source, from assimilating data from three tsunameters during 14 min, but with a minimum average time lag of nearly 5 min between simulated and forecasted waveforms. Additional tests show that the time lag is reduced for tsunami sources that are located just outside of the area covered by the tsunameter network. The latter suggests that sea surface data assimilation from a sparse network of stations could be a strong complement for the fastest tsunami early warning systems based on pre-modelled seismic scenarios.