Options
Dr. Astudillo-Defru, Nicola
Nombre de publicación
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
8 results
Research Outputs
Now showing 1 - 8 of 8
- PublicationTOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf(EDP Sciences, 2021)
; ;Murgas, F. ;Bonfils, X. ;Crossfield, I. ;Almenara, J. ;Livingston, J. ;Stassun, K. ;Korth, J. ;Orell-Miquel, J. ;Morello, G. ;Eastman, J. ;Lissauer, J. ;Kane, S. ;Morales, F. ;Werner, M. ;Gorjian, V. ;Benneke, B. ;Dragomir, D. ;Matthews, E. ;Howell, S. ;Ciardi, D. ;Gonzales, E. ;Matson, R. ;Beichman, C. ;Schlieder, J. ;Collins, K. ;Collins, K. ;Jensen, E. ;Evans, P. ;Pozuelos, F. ;Gillon, M. ;Jehin, E. ;Barkaoui, K. ;Artigau, E. ;Bouchy, F. ;Charbonneau, D. ;Delfosse, X. ;Díaz, R. ;Doyon, R. ;Figueira, P. ;Forveille, T. ;Lovis, C. ;Melo, C. ;Gaisné, G. ;Pepe, F. ;Santos, N. ;Ségransan, D. ;Udry, S. ;Goeke, R. ;Levine, A. ;Quintana, E. ;Guerrero, N. ;Mireles, I. ;Caldwell, D. ;Tenenbaum, P. ;Brasseur, C. ;Ricker, G. ;Vanderspek, R. ;Latham, D. ;Seager, S. ;Winn, J.Jenkins, J.Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M⋆ = 0.420 ± 0.010 M⊙, R⋆ = 0.420 ± 0.013 R⊙, and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10−6 days, a planetary radius of 5.25 ± 0.17 R⊕, and a mass of 23.6 ± 3.3 M⊕ implying a mean density of ρp =0.91 ± 0.15 g cm−3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope. - PublicationTOI-3884 b: A rare 6-RE planet that transits a low-mass star with a giant and likely polar spot(EDP Sciences, 2022)
; ;Almenara, J. ;Bonfils, X. ;Forveille, T. ;Ciardi, D. ;Schwarz, R. ;Collins, K. ;Cointepas, M. ;Lund, M. ;Bouchy, F. ;Charbonneau, D. ;Díaz, R. ;Delfosse, X. ;Kidwell, R. ;Kunimoto, M. ;Latham, D. ;Lissauer, J. ;Murgas, F. ;Ricker, G. ;Seager, S. ;Vezie, M.Watanabe, D.The Transiting Exoplanet Survey Satellite mission identified a deep and asymmetric transit-like signal with a periodicity of 4.5 days orbiting the M4 dwarf star TOI-3884. The signal has been confirmed by follow-up observations collected by the ExTrA facility and Las Cumbres Observatory Global Telescope, which reveal that the transit is chromatic. The light curves are well modelled by a host star having a large polar spot transited by a 6-RE planet. We validate the planet with seeing-limited photometry, high-resolution imaging, and radial velocities. TOI-3884 b, with a radius of 6.00 ± 0.18 RE, is the first sub-Saturn planet transiting a mid-M dwarf. Owing to the host star’s brightness and small size, it has one of the largest transmission spectroscopy metrics for this planet size and becomes a top target for atmospheric characterisation with the James Webb Space Telescope and ground-based telescopes. - PublicationMasses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley(Oxford University Press, 2021)
; ;Van Eylen, V. ;Bonfils, X. ;Livingston, J. ;Hirano, T. ;Luque, R. ;Lam, K. ;Justesen, A. ;Winn, J. ;Gandolfi, D. ;Nowak, G. ;Palle, E. ;Albrecht, S. ;Dai, F. ;Campos-Estrada, B. ;Owen, J. ;Foreman-Mackey, D. ;Fridlund, M. ;Korth, J. ;Mathur, S. ;Forveille, T. ;Mikal-Evans, T. ;Osborne, H. ;Ho, C. ;Almenara, J. ;Artigau, E. ;Barragán, O. ;Barros, S. ;Bouchy, F. ;Cabrera, J. ;Caldwell, D. ;Charbonneau, D. ;Chaturvedi, P. ;Cochran, W. ;Csizmadia, S. ;Damasso, M. ;Delfosse, X. ;De Medeiros, J. ;Díaz, R. ;Doyon, R. ;Esposito, M. ;Fűrész, G. ;Figueira, P. ;Georgieva, I. ;Goffo, E. ;Grziwa, S. ;Guenther, E. ;Hatzes, A. ;Jenkins, J. ;Kabath, P. ;Knudstrup, E. ;Latham, D. ;Lavie, B. ;Lovis, C. ;Mennickent, R. ;Mullally, S. ;Murgas, F. ;Narita, N. ;Pepe, F. ;Persson, C. ;Redfield, S. ;Ricker, G. ;Santos, N. ;Seager, S. ;Serrano, L. ;Smith, A. ;Suárez-Mascareño, A. ;Subjak, J. ;Twicken, J. ;Udry, S. ;Vanderspek, R.Zapatero-Osorio, M.We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 days. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M⊕, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the ‘radius valley’ — a region in the radius-period diagram with relatively few members, which has been interpreted as a consequence of atmospheric photo-evaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photo-evaporation and core-powered mass loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere. - PublicationThe CARMENES search for exoplanets around M dwarfs. Two terrestrial planets orbiting G 264–012 and one terrestrial planet orbiting Gl 393(EDP Sciences, 2021)
; ;Amado, P. ;Bauer, F. ;Rodríguez-López, C. ;Rodríguez, E. ;Cardona-Guillén, C. ;Perger, M. ;Caballero, J. ;López-González, M. ;Muñoz Rodríguez, I. ;Pozuelos, F. ;Sánchez-Rivero, A. ;Schlecker, M. ;Quirrenbach, A. ;Ribas, I. ;Reiners, A. ;Almenara, J. ;Azzaro, M. ;Béjar, V. ;Bohemann, R. ;Bonfils, X. ;Bouchy, F. ;Cifuentes, C. ;Cortés-Contreras, M. ;Delfosse, X. ;Dreizler, S. ;Forveille, T. ;Hatzes, A. ;Henning, T. ;Jeffers, S. ;Kaminski, A. ;Kürster, M. ;Lafarga, M. ;Lodieu, N. ;Lovis, C. ;Mayor, M. ;Montes, D. ;Morales, J. ;Morales, N. ;Murgas, F. ;Ortiz, J. ;Pallé, E. ;Pepe, F. ;Perdelwitz, V. ;Pollaco, D. ;Santos, N. ;Schöfer, P. ;Schweitzer, A. ;Ségransan, N. ;Shan, Y. ;Stock, S. ;Tal-Or, L. ;Udry, S. ;Zapatero Osorio, M.Zechmeister, M.We report the discovery of two planetary systems, namely G 264–012, an M 4.0 dwarf with two terrestrial planets (Mb sin i=2.50−0.30+0.29 M⊕ and Mc sin i=3.75−0.47+0.48 M⊕), and Gl 393, a bright M 2.0 dwarf with one terrestrial planet (Mb sini = 1.71 ± 0.24M⊕). Although both stars were proposed to belong to young stellar kinematic groups, we estimate their ages to be older than about 700 Ma. The two planets around G 264–012 were discovered using only radial-velocity (RV) data from the CARMENES exoplanet survey, with estimated orbital periods of 2.30 d and 8.05 d, respectively.Photometric monitoring and analysis of activity indicators reveal a third signal present in the RV measurements, at about 100 d,caused by stellar rotation. The planet Gl 393 b was discovered in the RV data from the HARPS, CARMENES, and HIRES instruments. Its identification was only possible after modelling, with a Gaussian process (GP), the variability produced by the magnetic activity of the star. For the earliest observations, this variability produced a forest of peaks in the periodogram of the RVs at around the 34 d rotation period determined from Kepler data, which disappeared in the latestepochs. After correcting for them with this GP model, a significant signal showed at a period of 7.03 d. No significant signals in any of our spectral activity indicators or contemporaneous photometry were found at any of the planetary periods. Given the orbital and stellar properties, the equilibrium temperatures of the three planets are all higher than that for Earth. Current planet formation theories suggest that these two systems represent a common type of architecture. This is consistent with formation following the core accretion paradigm. - PublicationA quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514. A super-Earth on an eccentric orbit moving in and out of the habitable zone(Astronomy & Astrophysics, 2022)
; ;Damasso, M. ;Perger, M. ;Almenara, J. ;Nardiello, D. ;Pérez-Torres, M. ;Sozzetti, A. ;Hara, N. ;Quirrenbach, A. ;Bonfils, X. ;Zapatero Osorio, M. ;González-Hernández, J. ;Suárez-Mascareno, A. ;Amado, P. J. ;Forveille, T. ;Lillo-Box, J. ;Alibert, Y. ;Caballero, J. ;Cifuentes, C. ;Delfosse, X. ;Figueira, P. ;Galadí-Enríquez, D. ;Hatzes, A. ;Henning, Th. ;Kaminski, A. ;Mayor, M. ;Murgas, F. ;Montes, D. ;Pinamonti, M. ;Reiners, A. ;Ribas, I. ;Béjar, V. ;Schweitzer, A.Zechmeister, M.Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentially habitable planets in the solar neighbourhood. Aims. We investigated the presence of planetary companions around the nearby (7.6 pc) and bright (V = 9 mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 yr with the HIRES, HARPS, and CARMENES spectrographs. Methods. The data are affected by time-correlated signals at the level of 2–3 m s−1 due to stellar activity, which we filtered out, testing three different models based on Gaussian process regression. As a sanity cross-check, we repeated the analyses using HARPS radial velocities extracted with three different algorithms. We used HIRES radial velocities and Hipparcos-Gaia astrometry to put constraints on the presence of long-period companions, and we analysed TESS photometric data. Results. We find strong evidence that Gl 514 hosts a super-Earth on a likely eccentric orbit, residing in the conservative habitable zone for nearly 34% of its orbital period. The planet Gl 514b has minimum mass mb sin ib = 5.2 ± 0.9 M⊕, orbital period Pb = 140.43 ± 0.41 days, and eccentricity eb = 0.45−0.14+0.15. No evidence for transits is found in the TESS light curve. There is no evidence for a longer period companion in the radial velocities and, based on astrometry, we can rule out a ~0.2 MJup planet at a distance of ~3–10 astronomical units, and massive giant planets and brown dwarfs out to several tens of astronomical units. We discuss the possible presence of a second low-mass companion at a shorter distance from the host than Gl 514 b. Conclusions. Gl 514 b represents an interesting science case for studying the habitability of planets on eccentric orbits. We advocate for additional spectroscopic follow-up to get more accurate and precise planetary parameters. Further follow-up is also needed to investigate the presence of additional planetary signals of less than 1 m s−1. - PublicationTOI-663: A newly discovered multi-planet system with three transiting mini-Neptunes orbiting an early M star(EDP Sciences, 2024)
; ;Cointepas, M. ;Bouchy, F. ;Almenara, J. ;Bonfils, X. ;Knierim, H. ;Stalport, M. ;Mignon, L. ;Grieves, N. ;Bean, J. ;Brady, M. ;Burt, J. ;Canto-Martins, B. ;Collins, K. ;Collins, K. ;Delfosse, X. ;de Medeiros, J. ;Demory, B. ;Dorn, C. ;Forveille, T. ;Fukui, A. ;Gan, T. ;Gómez-Maqueo-Chew, Y. ;Halverson, S. ;Helled, R. ;Helm, I. ;Hirano, T. ;Horne, K. ;Howell, S. ;Isogai, K. ;Kasper, D. ;Kawauchi, K. ;Livingston, J. ;Massey, B. ;Matson, R. ;Murgas, F. ;Narita, N. ;Palle, E. ;Relles, H. ;Sabin, L. ;Schanche, N. ;Schwarz, R. ;Seifahrt, A. ;Shporer, A. ;Stefansson, G. ;Sturmer, J. ;Tamura, M. ;Tan, T. ;Twicken, J. ;Watanabe, N. ;Wells, R. ;Wilkin, F. ;Ricker, G. ;Seager, S. ;Winn, J.Jenkins, J.We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195; V = 13.7 mag, J = 10.4 mag, R★ = 0.512 ± 0.015 R⊙, M★ = 0.514 ± 0.012 M⊙, d = 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10 R⊕, 2.26 ± 0.10 R⊕, and 1.92 ± 0.13 R⊕ and masses of 4.45 ± 0.65 M⊕, 3.65 ± 0.97 M⊕, and <5.2 M⊕ at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types. - PublicationTOI-4860 b, a short-period giant planet transiting an M3.5 dwarf(EDP Sciences, 2024)
; ;Almenara, J. ;Bonfils, X. ;Bryant, E. ;Jordán, A. ;Hébrard, G. ;Martioli, E. ;Correia, A. ;Cadieux, C. ;Arnold, L. ;Artigau, É. ;Bakos, G. ;Barros, S. ;Bayliss, D. ;Bouchy, F. ;Boué, G. ;Brahm, R. ;Carmona, A. ;Charbonneau, D. ;Ciardi, D. ;Cloutier, R. ;Cointepas, M. ;Cook, N. ;Cowan, N. ;Delfosse, X. ;Dias do Nascimento, J. ;Donati, J. ;Doyon, R. ;Forveille, T. ;Fouqué, P. ;Gaidos, E. ;Gilbert, E. ;da Silva, J. ;Hartman, J. ;Hesse, K. ;Hobson, M. ;Jenkins, J. ;Kiefer, F. ;Kostov, V. ;Laskar, J. ;Lendl, M. ;L’Heureux, A. ;Martins, J. ;Menou, K. ;Moutou, C. ;Murgas, F. ;Polanski, A. S. ;Rapetti, D. ;Sedaghati, E.Shang, H.We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R* = 0.358 ± 0.015 R⊙, M* = 0.340 ± 0.009 M⊙). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 ± 0.03 RJ and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 ± 0.12) and measured the mass of the planet (0.273 ± 0.006 MJ). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 ME) found around mid to late M dwarfs (<0.4 R⊙), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 ± 0.09) with an orbital period of 427 ± 7 days and a minimum mass of 1.66 ± 0.26 MJ, but additional data would be needed to confirm this. - PublicationGJ 3090 b: One of the most favourable mini-Neptune for atmospheric characterisation(EDP Sciences, 2022)
; ;Almenara, J. ;Bonfils, X. ;Otegi, J. ;Attia, O. ;Turbet, M. ;Collins, K. ;Polanski, A. ;Bourrier, V. ;Hellier, C. ;Ziegler, C. ;Bouchy, F. ;Briceno, C. ;Charbonneau, D. ;Cointepas, M. ;Collins, K. ;Crossfield, I. ;Delfosse, X. ;Diaz, R. ;Dorn, C. ;Doty, J. ;Forveille, T. ;Gaisné, G. ;Gan, T. ;Helled, R. ;Hesse, K. ;Jenkins, J. ;Jensen, E. ;Latham, D. ;Law, N. ;Mann, A. ;Mao, S. ;McLean, B. ;Murgas, F. ;Myers, G. ;Seager, S. ;Shporer, A. ;Tan, T. G. ;Twicken, J.Winn, J.We report the detection of GJ 3090 b (TOI-177.01), a mini-Neptune on a 2.9-day orbit transiting a bright (K = 7.3 mag) M2 dwarf located at 22 pc. The planet was identified by the Transiting Exoplanet Survey Satellite and was confirmed with the High Accuracy Radial velocity Planet Searcher radial velocities. Seeing-limited photometry and speckle imaging rule out nearby eclipsing binaries. Additional transits were observed with the LCOGT, Spitzer, and ExTrA telescopes. We characterise the star to have a mass of 0.519 ± 0.013 M⊙ and a radius of 0.516 ± 0.016 R⊙. We modelled the transit light curves and radial velocity measurements and obtained a planetary mass of 3.34 ± 0.72 ME, a radius of 2.13 ± 0.11 RE, and a mean density of 1.89−0.45+0.52 g cm−3. The low density of the planet implies the presence of volatiles, and its radius and insolation place it immediately above the radius valley at the lower end of the mini-Neptune cluster. A coupled atmospheric and dynamical evolution analysis of the planet is inconsistent with a pure H–He atmosphere and favours a heavy mean molecular weight atmosphere. The transmission spectroscopy metric of 221−46+66 means that GJ 3090 b is the second or third most favorable mini-Neptune after GJ 1214 b whose atmosphere may be characterised. At almost half the mass of GJ 1214 b, GJ 3090 b is an excellent probe of the edge of the transition between super-Earths and mini-Neptunes. We identify an additional signal in the radial velocity data that we attribute to a planet candidate with an orbital period of 13 days and a mass of 17.1−3.2+8.9 ME, whose transits are not detected.