Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    NSD3 in cancer: Unraveling methyltransferase-dependent and isoform-specific functions
    (MDPI, 2024) ;
    Nuñez, Yanara
    ;
    Vera, Sebastian
    ;
    Baeza, Victor
    NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
  • Publication
    OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc
    (Springer Nature, 2017)
    Ivanov, A A
    ;
    ;
    Khuri, L F
    ;
    Niu, Q
    ;
    Wang, Y
    ;
    Xu, Y
    ;
    Bai, Y
    ;
    Mo, X
    ;
    Prochownik, E V
    ;
    Johns, M A
    ;
    Du, Y
    ;
    Khuri, F R
    ;
    H Fu
    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein–protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were used to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through PPI.
  • Publication
    Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase
    (Springer Nature, 2015) ;
    Valdés, Sara
    ;
    Pons, Véronique
    ;
    Honorato, Paula
    ;
    Martinez, Laurent O
    ;
    Lamperti, Liliana
    ;
    Aguayo, Claudio
    ;
    Radojkovic, Claudia
    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein–protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were used to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through PPI.