Options
Dra. González-Pecchi, Valentina
Nombre de publicación
Dra. González-Pecchi, Valentina
Nombre completo
González Pecchi, Valentina María
Facultad
Email
vgonzalez@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationThe OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies(Springer Nature, 2017)
;Li, Zenggang ;Ivanov, Andrei A ;Su, Rina; ;Qi, Qi ;Liu, Songlin ;Webber, Philip ;McMillan, Elizabeth ;Rusnak, Lauren ;Pham, Cau ;Chen, Xiaoqian ;Mo, Xiulei ;Revennaugh, Brian ;Zhou, Wei ;Marcus, Adam ;Harati, Sahar ;Chen, Xiang ;Johns, Margaret A ;White, Michael A ;Moreno, Carlos S ;D. Cooper, Lee A ;Du, Yuhong ;Khuri, Fadlo RFu, HaianAs genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein–protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4. As example, the NSD3 (WHSC1L1)–MYC interaction suggests a new mechanism for NSD3/BRD4 chromatin complex regulation of MYC-driven tumours. Association of undruggable tumour suppressors with drug targets informs therapeutic options. Based on OncoPPi-derived STK11-CDK4 connectivity, we observe enhanced sensitivity of STK11-silenced lung cancer cells to the FDA-approved CDK4 inhibitor palbociclib. OncoPPi is a focused PPI resource that links cancer genes into a signalling network for discovery of PPI targets and network-implicated tumour vulnerabilities for therapeutic interrogation. - PublicationOncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc(Springer Nature, 2017)
;Ivanov, A A; ;Khuri, L F ;Niu, Q ;Wang, Y ;Xu, Y ;Bai, Y ;Mo, X ;Prochownik, E V ;Johns, M A ;Du, Y ;Khuri, F RH FuMitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein–protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were used to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through PPI. - PublicationApolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase(Springer Nature, 2015)
; ;Valdés, Sara ;Pons, Véronique ;Honorato, Paula ;Martinez, Laurent O ;Lamperti, Liliana ;Aguayo, ClaudioRadojkovic, ClaudiaMitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein–protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were used to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through PPI.