Options
Dra. Tellier, Florence
Nombre de publicación
Dra. Tellier, Florence
Nombre completo
Tellier, Florence Marie
Facultad
Email
ftellier@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationEffect of sand-influence on the morphology of Mazzaella laminarioides (Rhodophyta, Gigartinales) on rocky intertidal shores(The Journal Botanica Marina, 2023)
;Polanco, Yugreisy; ; Pérez-Araneda, KarlaMorphological variability is common among macroalgae. In central Chile, Mazzaella laminarioides extends throughout the intertidal rocky zones, where blades are reported to grow up to 20 cm in length. Nevertheless, in low rocky intertidal zones with sand-influence, blades are noticeably larger than in other shores without sand effect. The aim of this study was to compare the morphology of M. laminarioides blades from two different conditions. Blades collected from four sites with, and four without, sand-influence were evaluated with traditional morphometry. Results showed that blades were longer and wider in sand-influenced sites. Sand abrasion was not directly evaluated, but indirect effects such as the abundance of bare rock and of sand tolerant species were higher in areas with sand-influence. Also, long blades were restricted to sand-influenced sites, supporting the relation between these two variables. Molecular analyses using the COI marker confirmed large-bladed individuals as M. laminarioides. Results indicated that life cycle phase, seasonality and vertical height were not related to large blades. We suggest that restriction of large blades to sand-influenced sites may be related to the healing processes of basal holdfasts after suffering sand abrasion. - PublicationLessonia berteroana en Perú: Comprobación de la identidad de la especie y diversidad genética en el borde norte de distribución(Revista de biología marina y oceanografía, 2020)
; ;Pérez-Araneda, Karla ;Zevallos, Sheyla ;Arakaki, Natalia ;Gamarra, AlexCarbajal, PatriciaHarvest pressure on brown macroalgae of the Lessonia genus has increased in recent years in Peru and Chile, due to the high demand from the global hydrocolloid industry. After a taxonomic review, in 2012, the intertidal species Lessonia nigrescens was segregated into two species, being L. berteroana distributed in southern Peru and northern Chile (17-30°S). Based on genetic tools we confirm the identification as L. berteroana and report its presence up to 15°23’S. It is recommended to update the status of the species into Peruvian regulations and scientific publications. - PublicationPhylogeography of two intertidal seaweeds, Gelidium lingulatum and G-rex (Rhodophyta: Gelidiales), along the South East Pacific: Patterns explained by rafting dispersal?(Marine Biology, 2017)
; ;López, Boris ;Retamal-Alarcón, Juan ;Pérez-Araneda, Karla ;Ariel O Fierro ;Macaya, Erasmo ;Fadia, TalaThiel, MartinRafting on floating seaweeds facilitates dispersal of associated organisms, but there is little information on how rafting affects the genetic structure of epiphytic seaweeds. Previous studies indicate a high presence of seaweeds from the genus Gelidium attached to floating bull kelp Durvillaea antarctica (Chamisso) Hariot. Herein, we analyzed the phylogeographic patterns of Gelidium lingulatum (Kützing 1868) and G. rex (Santelices and Abbott 1985), species that are partially co-distributed along the Chilean coast (28°S–42°S). A total of 319 individuals from G. lingulatum and 179 from G. rex (20 and 11 benthic localities, respectively) were characterized using a mitochondrial marker (COI) and, for a subset, using a chloroplastic marker (rbcL). Gelidium lingulatum had higher genetic diversity, but its genetic structure did not follow a clear geographic pattern, while G. rex had less genetic diversity with a shallow genetic structure and a phylogeographic break coinciding with the phylogeographic discontinuity described for this region (29°S–33°S). In G. lingulatum, no isolation-by-distance was observed, in contrast to G. rex. The phylogeographic pattern of G. lingulatum could be explained mainly by rafting dispersal as an epiphyte of D. antarctica, although other mechanisms cannot be completely ruled out (e.g., human-mediated dispersal). The contrasting pattern observed in G. rex could be attributed to other factors such as intertidal distribution (i.e., G. rex occurs in the lower zone compared to G. lingulatum) or differential efficiency of recruitment after long-distance dispersal. This study indicates that rafting dispersal, in conjunction with the intertidal distribution, can modulate the phylogeographic patterns of seaweeds. - PublicationTaxonomic position of the two sympatric forms of Chondracanthus chamissoi (f. lessonii and f. chauvinii) (Rhodophyta, Gigartinaceae) by using two molecular markers(Latin american journal of aquatic research, 2021)
; ;Rodríguez, Catalina ;Pérez-Araneda, KarlaThe red seaweed Chondracanthus chamissoi shows high morphological variability. Initially, three species were identified based on the width of the main axis of their blades. Later, all of them were included in a single species with two morphological groups. Recently, quantitative studies demonstrated the existence of two forms in C. chamissoi: f. lessonii and f. chauvinii. It was also shown that these two forms occur in sympatry, growing side by side. These forms were not associated with either a life cycle phase or the sex of the blades. This study aimed to determine whether the two forms could represent different species. We evaluated the forms' taxonomic position using COI and rbcL markers, including samples from three localities in southern Chile. All specimens shared a single rbcL haplotype, whereas the two COI haplotypes differed by four base pairs and were present in blades of both forms and life cycle phases. The two morphological types correspond to intraspecific forms. This species is of commercial importance, and its main market is aimed at human consumption with a marked preference for f. lessonii.