Options
Dr. Tume-Zapata, Pedro
Nombre de publicación
Dr. Tume-Zapata, Pedro
Nombre completo
Tume Zapata, Pedro Ignacio
Facultad
Email
ptume@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationDistinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano, Chile(Springer, 2018)
; ; ; ;Cuitiño, Lucas ;Bech, JaumeRoca, NúriaPurpose: The objectives of this study were (1) to determine the concentrations and background concentrations of Ba, Co, Cr, Mn, and Ni in the urban soils of Talcahuano (Chile); (2) assess the level of contamination in the urban soils based on different pollution indexes; and (3) to identify natural or anthropogenic sources in order to obtain a spatial distribution of the pollutants. Material and methods: A total of 420 samples were collected from the study area as follows: 140 topsoil samples (TS) (0–10 cm), 140 subsoil samples (SS) (10–20 cm), and 140 deep soil samples (DS) (150 cm). The soils were characterized, and the concentrations of Ba, Co, Cr, Mn, and Ni were analyzed by atomic absorption photospectrometry following aqua regia digestion. Correlations and principal component analysis combined with spatial analysis were implemented in order to distinguish the sources and their classification as geogenic or anthropogenic. Several simple and robust statistical methods were applied to datasets in order to explore their potential in the evaluation of a useful and robust background values. The degree of contamination along with the geoaccumulation index, enrichment factor, and contamination factor were also evaluated. Results and discussion: The median concentrations obtained for various elements includes Ba 461 mg kg−1, Co 82.7 mg kg−1, Cr 134 mg kg−1, Mn 311 mg kg−1, and Ni 56.1 mg kg−1. In general, the concentrations of Ba, Co, Cr, Mn, and Ni decrease with depth. Correlations and principal component analysis suggest that Cr, Mn, and Ni are contributed by external sources. The spatial distribution of Cr, Mn, and Ni in TS displays a spatial pattern extending along industrial environments and emission sources. Conclusions: The estimated background values determined with the iterative 2σ-technique includes 536 mg kg−1 for Ba, 95.9 mg kg−1 for Co, 208 mg kg−1 for Cr, 464 mg kg−1 for Mn, and 90.5 mg kg−1 for Ni. The geochemical index, enrichment factor, and the contamination factor register a moderate to considerable contamination in some soil samples. - PublicationAn assessment of the potentially hazardous element contamination in urban soils of Arica, Chile(Elsevier, 2018)
; ;Roca, Núria ;Rubio, Rodrigo; Bech, JaumeAs a common component of urban ecosystems, urban soils generally have elevated concentrations of potentially hazardous elements originating from both point and diffuse sources of pollution in cities. This study focuses on the port city of Arica in northern Chile, where anthropogenic activities may have led to contamination of the uppermost topsoil layer. The purpose of this study is to (1) establish background content levels of potentially hazardous elements in topsoils of different land uses using different statistical approaches and (2) assess the degree of topsoil pollution and identify the local sources of pollution using multivariate statistical and geostatistical methods. Data from a Chilean Government CONAMA report were analyzed. Geostatistical methods such as kriging were applied to identify the spatial distribution of potential hazards elements. Potentially hazardous elements' background values were determined by median + 2MAD, inflection points within cumulative frequency plots and upper whisker of a Tukey's boxplot. Multivariate statistical methods were applied in the identification of trace metal sources (anthropogenic vs natural origin). Soil pollution assessment was performed using the geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (Cf) and integrated pollution index (IPI). The maps obtained show high baseline values for some elements (As, Cu, Pb and Zn), which denote a clear anthropogenic contribution due to the long period of constant human activities in the study area. Therefore, background values are estimated with the median + 2 × MAD procedure and yielded As (17.4 mg kg− 1), Ba (23.3 mg kg− 1), Cr (13.6 mg kg− 1), Cu (37.4 mg kg− 1), Ni (8.3 mg kg− 1), Pb (313 mg kg− 1), V (101 mg kg− 1) and Zn (235 mg kg− 1). The calculated soil pollution indexes Igeo, EF, Cf and IPI revealed significant ecological impacts. Copper and As are the two trace elements with the highest contaminated soil values; however, Cu, Pb and Zn have greater numbers of soil sample sites in the moderately to heavily contaminated range. The IPI showed extremely high pollution index in ten soil sites in Arica. Moreover, significant differences were observed with different land uses, where soils along the railway line and industrial area are the most polluted.