Options
Dr. Villalobos-Jara, Felipe
Nombre de publicación
Dr. Villalobos-Jara, Felipe
Nombre completo
Villalobos Jara, Felipe Alberto
Facultad
Email
avillalobos@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationDesign, construction, and operation of a monitored district heating pipeline system(Journal of Pipeline Systems Engineering and Practice, 2019)
; ;Hay, Stefan ;Weidlich, IngoWolf, IngoThe need for understanding the performance of district heating pipeline systems has led to the development of a monitoring program. This program includes the design of the connection of an instrumented section of piping within an in-use district heating network. The design complies with the current European district heating recommendations and standards. Monitoring consists of the measurement of earth pressures against the pipes, axial pipe displacements, and temperature of the fluid and soil around the pipes. There are different conditions being tested such as thickness of insulation materials, temperature ranges, and bedding soil type. In particular, there is interest in testing the corner positions. Details of the piping and instrumentation arrangements as well as soil geotechnical characteristics are presented. It was found that when the fluid temperature increased from ambient conditions up to 90°C, pipes were moving all along their length. Moreover, after a fluid temperature drop from 90°C to 20°C over 20 days and subsequent increase to 90°C again, pipe axial displacements did not return to the same values as before - PublicationStudy of the elastic shear modulus of Bío Bío sand using bender elements in an oedometer(American Society of Mechanical Engineers, 2017)
; ;Ayala, JuanAlvarado, GiovannyThe objective of the paper is to study the shear stiffness of Bío Bío sand. To this end, a system to measure the travel time of shear waves in Bío Bío sand samples using bender elements was designed and setup in an adapted oedometer device. Measurements were carried out for sand samples with different relative density, pressure/deformation, diameter/height, dry/saturated and varying the frequency, amplitude, and type of the triggered electric signals. The shear wave velocity and elastic shear modulus increased with relative density and effective vertical stress as previously found by other authors. In addition, Hardin type empirical formulas for estimating the elastic shear modulus are used to compare with the experimental results. Estimations proved to be good only in loading for effective vertical stresses around 100 kPa, since underestimation and overestimation of the shear modulus occurred for stresses below and above that value, respectively. Soil shear stiffness during unloading/reloading cycles was underestimated with the expressions used for loading. - PublicationGeotechnical properties of a natural zeolite(ICE, 2018)
;Georgiannou, Vasiliki N. ;Lefas, Demetrios ;Konstadinou, Maria ;Perraki, MariaThe work presented by Georgiannou et al. (2017) on geotechnical properties of a natural zeolite is an important contribution because there are not many published works on this subject. The authors mention some of the several studies with natural zeolites in other research areas, mainly in environmental applications such as waste-water treatments, soil–bentonite mixtures and in the improvement of cement and concrete properties. They also mention the existence of numerous engineering and industrial applications of natural zeolites in farming, fisheries, textiles and construction materials. This discussion will complement and comment on some of the results obtained by the authors and suggest that extra information would be useful in order to make a more comprehensive analysis. - PublicationObservations from a parametric study of the seismic design of soil nailingA parametric study of the seismic design of soil-nailed walls is performed. Values of a set of geometrical and mechanical parameters for the nail and soil of a slope have been varied to assess their effects on the global factor of safety FSG. Equations of limit equilibrium of forces based on the Coulomb criterion for a two-block-failure mechanism are adopted. Pseudo-static force analyses with a horizontal seismic coefficient of 0·15 are carried out, which is normally used in engineering practice for temporary soil-nailing projects. It was found that FSG clearly increases with soil cohesion and friction as well as nail length, diameter and inclination, although nail inclinations higher than 15° can become detrimental. It was found that there is a combination of nail spacing and wall inclination for which the trend of FSG changes from decreasing to increasing. This situation is caused by a software mathematical optimisation routine, which does not take into account whether it is possible for the failure surface shape to occur or not. Additionally, perforation diameters larger than 100 mm are necessary for FSG ≥ 1·1 and soil–nail shear stress rs values of more than 200 kPa are not significantly beneficial.