Research Outputs

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Scalping techniques in geomechanical characterization of coarse granular materials
    (Obras y Proyectos, 2020) ;
    Dorador, Leonardo
    The study of materials with large particle size has been a great challenge in geotechnical engineering. Despite the current work around the world using coarse-grained materials CGM in rockfill dams and mining waste rock dumps, for instance the geotechnical characterization of these materials is still an important issue in geotechnical engineering practice which deserve more research. There are standards covering CGM in a few particular applications and scaling methods have been proposed to deal with large particle sizes. However, scaling methods are appropriate only under certain conditions. The scalping techniques consist in a simple approach for the geotechnical characterization of CGM. In this article, the scalping techniques analysed are divided in: the scalping method, the matrix method and the scalping/replacement, which are studied in detail in terms of its effectiveness, focusing on the geomechanical characterization of CGM. As a main conclusion, these three techniques are limited in its use under small scalping ratios (3 < r < 8) which is the ratio of maximum particle size of both original and scalped gradation. Finally, recommendations for the use of percentages and ratio of scalping are provided.
  • Publication
    2D numerical evaluation of a vertical soil nail wall
    (Australian Geomechanics Journal, 2020) ;
    Peña-Flores, Manuel
    ;
    Villalobos-Cifuentes, Sergio
    The technique of soil nailing has been increasingly used in stabilization works of slopes and excavations. With this, the use of numerical modelling tools in soil nailing projects is becoming increasingly present in Geotechnical companies. This paper includes a case study of a soil nailing wall instrumented in ConcepciĂ³n city, which consists of an excavation of 15 m height in a residual soil of completely decomposed granitic rock. The numerical model was calibrated, comparing the results of the field instrumentation with the numerical estimates provided by the FEM-RS2 software, based on the two-dimensional finite element method and considering an elastic perfectly plastic model. In this way, the strength reduction factor of the geotechnical structure was obtained, which was compared with the overall factor of safety obtained by limit equilibrium analysis. In addition, through the numerical simulation, it was possible to realize an analysis of the loads on the nails, total displacements of the vertical wall, and compare them with the numerical results. The analysis of the results made it possible to confirm the capacity and usefulness of the FEM-RS2 software in the development and elaboration of soil nailing projects.
  • Publication
    Discussion: Analysis of a full-scale slope failure test on a sludge embankment
    (Emerald Publishing Limited, 2020) ;
    Verreydt, Kristof
    ;
    Van Gemert, Dionys
    ;
    Rauwoens, Pieter
    ;
    Houtmeyers, Jules
    ;
    Claes, Tom
  • Thumbnail Image
    Publication
    Analysis of the geomechanical characterization of coarse granular materials using the parallel gradation method
    (Obras y Proyectos, 2020) ;
    Dorador, Leonardo
    The geotechnical characterization of coarse granular materials such as very coarse-grained soils, rockfills, mining waste rocks and related materials is one of the key themes in geotechnical engineering but least studied and developed. Although there are some geotechnical standards and accepted geotechnical practice, there is not a standard for size-scaling, which is a critical step in advanced stage engineering (i.e. detailed design) on large structures involving this kind of materials. Several size-scaling techniques are available for use, with advantages and disadvantages. Among these, the parallel gradation method PGM (also known as homothetic grain size distribution), is one of the current practices and used for more than 50 years, but surprisingly just a few studies have corroborated its capability, and under specific material types. This work assesses a detailed database covering the development of this method from its first uses up to now. The application of this method is analysed based mainly on the material maximum internal friction angle and the Marsal’s particle breakage index (Bg).