Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Study of the anisotropic elastic response of a foliated phyllite
    (ICE Publishing, 2022) ;
    Rodríguez, Paula
    ;
    Vera, Miguel
    Anisotropy is a crucial characteristic of metamorphic rocks whereby minerals oriented in a preferential direction can originate mineral foliation. Inherent anisotropy can affect the rock behaviour significantly. Transverse isotropy is a particular case of anisotropy where foliation planes are distributed in the rock mass. Therefore, in this study the anisotropy effect on the elastic properties of a foliated phyllite is considered. To this end, a series of laboratory tests was programmed. Triaxial tests were carried out under confining pressures up to 20 MPa. Elastic parameters such as elasticity modulus, E, and Poisson's ratio, ν, are assessed from triaxial test results as well as from ultrasonic tests, where compression and shear wave velocities are determined. Empirical relationships for elastic parameters are suggested as a function of foliation angle, β, and confinement. In addition, anisotropy indexes are adopted to evaluate results, comparing when possible with those of previous works. It was found that E increases with confinement; however, the effect of anisotropy on E reduces with confinement. It was also found that ν is affected by β but not by confinement.
  • Publication
    Observations from a parametric study of the seismic design of soil nailing
    (ICE, 2018) ;
    Villalobos, Sergio
    ;
    Oróstegui, Paulo
    A parametric study of the seismic design of soil-nailed walls is performed. Values of a set of geometrical and mechanical parameters for the nail and soil of a slope have been varied to assess their effects on the global factor of safety FSG. Equations of limit equilibrium of forces based on the Coulomb criterion for a two-block-failure mechanism are adopted. Pseudo-static force analyses with a horizontal seismic coefficient of 0·15 are carried out, which is normally used in engineering practice for temporary soil-nailing projects. It was found that FSG clearly increases with soil cohesion and friction as well as nail length, diameter and inclination, although nail inclinations higher than 15° can become detrimental. It was found that there is a combination of nail spacing and wall inclination for which the trend of FSG changes from decreasing to increasing. This situation is caused by a software mathematical optimisation routine, which does not take into account whether it is possible for the failure surface shape to occur or not. Additionally, perforation diameters larger than 100 mm are necessary for FSG ≥ 1·1 and soil–nail shear stress rs values of more than 200 kPa are not significantly beneficial.