Research Outputs

Now showing 1 - 2 of 2
Thumbnail Image
Publication

Neuromotor decline is associated with gut dysbiosis following surgical decompression for Degenerative Cervical Myelopathy

2024, Dr. Farkas-Pool, Carlos, Dra. Vidal-Vera, Pía, Brockie, Sydney, Hong, James, Zhou, Cindy, Fehlings, Michael

Degenerative cervical myelopathy (DCM) describes a spectrum of disorders that cause progressive and chronic cervical spinal cord compression. The clinical presentation can be complex and can include locomotor impairment, hand and upper extremity dysfunction, pain, loss of bladder and bowel function, as well as gastrointestinal dysfunction. Once diagnosed, surgical decompression is the recommended treatment for DCM patients with moderate to severe impairment. Our body is composed of a large community of microorganisms, known as the microbiota. Traumatic and nontraumatic spinal cord injuries (SCIs) can induce changes in the gut microbiota and gut microbiota derived metabolites. These changes have been reported as important disease-modifying factors after injury. However, whether gut dysbiosis is associated with functional neurological recovery after surgical decompression has not been examined to date. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5–6 laminae. The extent of gut dysbiosis was assessed by gas chromatography and 16S rRNA sequencing from fecal samples before and after decompression. Neuromotor activity was assessed using the Catwalk test. Our results show that DCM pre- and post- surgical decompression is associated with gut dysbiosis, without altering short chain fatty acids (SCFAs) levels. Significant differences in Clostridia, Verrumicrobiae, Lachnospiracea, Firmicutes, Bacteroidales, and Clostridiaceae were observed between the DCM group (before decompression) and after surgical decompression (2 and 5 weeks). The changes in gut microbiota composition correlated with locomotor features of the Catwalk. For example, a longer duration of ground contact and dysfunctional swing in the forelimbs, were positively correlated with gut dysbiosis. These results show for the first time an association between gut dysbiosis and locomotor deterioration after delayed surgical decompression. Thus, providing a better understanding of the extent of changes in microbiota composition in the setting of DCM pre- and postsurgical decompression.

Thumbnail Image
Publication

Mir21 modulates inflammation and sensorimotor deficits in cervical myelopathy: Data from humans and animal models

2021, Dra. Vidal-Vera, Pía, Laliberte, Alex, Karadimas, Spyridon, Satkunendrarajah, Kajana, Fehlings, Michael

Degenerative cervical myelopathy is a common condition resulting from chronic compression of the spinal cord by degenerating structures of the spine. Degenerative cervical myelopathy present a wide range of outcomes, and the biological factors underlying this variability are poorly understood. Previous studies have found elevated MIR21-5p in the sub-acute and chronic neuroinflammatory environment after spinal cord injury. As chronic spinal cord neuroinflammation is a major feature of degenerative cervical myelopathy, we hypothesized that MIR21-5p may be particularly relevant to disease pathobiology, and could serve as a potential biomarker. A prospective cohort study of 69 human degenerative cervical myelopathy patients (36 male:33 female) between the ages of 30 and 78 years was performed to identify the relationship between MIR21-5p expression, symptom severity and treatment outcomes. Results from this study identified a positive correlation between elevated plasma MIR21-5p expression, initial symptom severity and poor treatment outcomes. Subsequent validation of these relationships using a mouse model of degenerative cervical myelopathy identified a similar elevation of MIR21-5p expression at 6 and 12 weeks after onset, corresponding to moderate to severe neurological deficits. To further determine how MIR21-5p affects cervical myelopathy pathobiology, this mouse model was applied to a Mir21 knockout mouse line. Deletion of the Mir21 gene preserved locomotor function on rotarod and forced swim tests, but also resulted in increased nociception based on tail flick, Von Frey filament and electrophysiological testing. Critically, Mir21 knockout mice also had reduced spinal cord inflammation, demonstrated by the reduction of Iba1+ microglia by ∼50% relative to wild-type controls. In vitro experiments using primary microglial cultures confirmed that MIR21-5p expression was greatly increased after exposure to lipopolysaccharide (pro-inflammatory), Il4 (anti-inflammatory) and hypoxia. Mir21 knockout did not appear to alter the ability of microglia to respond to these stimuli, as expression of key pro- and anti-inflammatory response genes was not significantly altered. However, target prediction algorithms identified the IL6/STAT3 pathway as a potential downstream target of MIR21-5p, and subsequent in vitro testing found that expression of components of the IL6 receptor complex, Il6ra and Il6st, were significantly higher in Mir21 knockout microglia. In aggregate, these data show that Mir21 plays a role in the progression of motor deficits and neuroinflammatory modulation in degenerative cervical myelopathy. Given this role in neuroinflammation, and its association with poor patient outcomes, MIR21-5p represents a potential therapeutic target and a new marker for prognostication.