Options
Dra. Elgueta-Herrera, Elizabeth
Nombre de publicación
Dra. Elgueta-Herrera, Elizabeth
Nombre completo
Elgueta Herrera, Elizabeth Yolanda
Facultad
Email
eelgueta@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationStable Reusability of Nanocellulose Aerogels with Amino Group Modification in Adsorption/Desorption Cycles for CO2 Capture(MDPI, 2025)
; ;Albornoz, Camila ;Rivera, Valentina ;Lira, Sebastian ;Valerio, Oscar; ;Muñoz, Robinson ;Sandoval, Franco; ; ; This study evaluated the stability and reusability of amino-functionalized nanocellulose aerogels as CO2-adsorbent materials. The modified aerogels, synthesized via a controlled silylation using N-[3-(trimethoxysilyl) propyl] ethylenediamine (DAMO), demonstrated excellent thermal stability up to 250 °C (TGA) and efficient CO2 adsorption through chemisorption, which was the main adsorption mechanism. The performance of the aerogels was assessed using both adsorption isotherms and the decay pressure technique, revealing that CO2 adsorption capacity increased with higher amino group loading (4.62, 9.24, and 13.87 mmol of DAMO). At 298 K and 4 bar, CO2 adsorption capacity increased proportionally with the amino group concentration, reaching values of 3.17, 5.98, and 7.86 mmol of CO2 g−1 polymer, respectively. Furthermore, over 20 adsorption/desorption cycles, the aerogels maintained 95% CO2 desorption at ambient temperature, indicating their potential for industrial use. These findings highlight the aerogels suitability as stable, reusable materials for large scale CO2 capture and storage technologies. - PublicationAdsorbents Derived from Xylan Hemicellulose with Removal Properties of Pollutant Metals(Chinese Journal of Polymer Science, 2023)
; ;Becerra, Yerko ;Martínez, Ana ;Pereira, Miguel ;Carrillo-Varela, Isabel ;Sanhueza, Felipe; Rivas, BernabéThe adsorption capacity of hydrogels derived from modified xylan hemicellulose has been tested in order to develop new bio-based adsorbent materials useful for removing metal ions pollutants, such as Cd(II), Cu(II) and Pb(II) from an aqueous solution. Xylan was extracted from bleached kraft pulp of eucalyptus and subsequently modified with different proportions of functional sulfonic acid groups (HA3–HA7) and sulfonate groups (HS30–HS70) to generate hydrogels. The results showed that all the synthesized hydrogels were capable of adsorbing metal ions, being the hydrogels with 30% and 50% xylan the ones that presented the highest adsorption capacity. Maximum capacity studies at different initial concentrations revealed that at an initial concentration of 300 mg·L−1, the HA3 hydrogel presented an adsorption capacity of 193 mg Pb(II), 182 mg Cd(II), and 66 mg Cu(II) per g hydrogel. The HA5 hydrogel presented a capacity of 185 mg Pb(II), 113 mg Cd(II), and 48 mg Cu(II) per g hydrogel. The HS30 hydrogel exhibited an adsorption of 205 mg Pb(II), 174 mg Cd(II), and 71 mg Cu(II) per g hydrogel, and HS50 hydrogel exhibited an adsorption capacity of 273 mg Pb(II), 143 mg Cd(II), and 45 mg Cu(II) per g hydrogel. These results show that modified Xylan hemicellulose is a promising adsorbent for removal Cd(II), Cu(II), and Pb(II) ions from aqueous solutions.