Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Optimization of Fenton technology for recalcitrant compounds and bacteria inactivation
    (MDPI, 2020) ;
    Frontela, José
    ;
    Vidal, Gladys
    In this work, the Fenton technology was applied to decolorize methylene blue (MB) and to inactivate Escherichia coli K12, used as recalcitrant compound and bacteria models respectively, in order to provide an approach into single and combinative effects of the main process variables influencing the Fenton technology. First, Box–Behnken design (BBD) was applied to evaluate and optimize the individual and interactive effects of three process parameters, namely Fe2+ concentration (6.0 Ă— 10−4, 8.0 Ă— 10−4 and 1.0 Ă— 10−3 mol/L), molar ratio between H2O2 and Fe2+ (1:1, 2:1 and 3:1) and pH (3.0, 4.0 and 5.0) for Fenton technology. The responses studied in these models were the degree of MB decolorization (D%MB), rate constant of MB decolorization (kappMB) and E. coli K12 inactivation in uLog units (IuLogEC). According to the results of analysis of variances all of the proposed models were adequate with a high regression coefficient (R2 from 0.9911 to 0.9994). BBD results suggest that [H2O2]/[Fe2+] values had a significant effect only on D%MB response, [Fe2+] had a significant effect on all the responses, whereas pH had a significant effect on D%MB and IuLogEC. The optimum conditions obtained from response surface methodology for D%MB ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 1.0 Ă— 10−3 mol/L and pH = 3.2), kappMB ([H2O2]/[Fe2+] = 1.7, [Fe2+] = 1.0 Ă— 10−3 mol/L and PH = 3.7) and IuLogEC ([H2O2]/[Fe2+] = 2.9, [Fe2+] = 7.6 Ă— 10−4 mol/L and pH= 3.2) were in good agreement with the values predicted by the model.
  • Thumbnail Image
    Publication
    In situ synthesis of Cu2O nanoparticles using eucalyptus globulus extract to remove a dye via advanced oxidation
    (MDPI, 2024) ;
    Rubilar, Olga
    ;
    Salazar, Claudio
    ;
    MĂ¡rquez, Katherine
    ;
    Vidal, Gladys
    Water pollution, particularly from organic contaminants like dyes, is a pressing issue, prompting exploration into advanced oxidation processes (AOPs) as potential solutions. This study focuses on synthesizing Cu2O on cellulose-based fabric using Eucalyptus globulus leaf extracts. The resulting catalysts effectively degraded methylene blue through photocatalysis under LED visible light and heterogeneous Fenton-like reactions with H2O2, demonstrating reusability. Mechanistic insights were gained through analyses of the extracts before and after Cu2O synthesis, revealing the role of phenolic compounds and reducing sugars in nanoparticle formation. Cu2O nanoparticles on cellulose-based fabric were characterized in terms of their morphology, structure, and bandgap via SEM-EDS, XRD, Raman, FTIR, UV–Vis DRS, and TGA. The degradation of methylene blue was pH-dependent; photocatalysis was more efficient at neutral pH due to hydroxyl and superoxide radical production, while Fenton-like reactions showed greater efficiency at acidic pH, primarily generating hydroxyl radicals. Cu2O used in Fenton-like reactions exhibited lower reusability compared to photocatalysis, suggesting deterioration. This research not only advances understanding of catalytic processes but also holds promise for sustainable water treatment solutions, contributing to environmental protection and resource conservation.