Options
Dr. Ávila-Macaya, Ariel
Research Outputs
Acute systemic white blood cell changes following Degenerative Cervical Myelopathy (DCM) in a Mouse Model
2022, Dr. Ávila-Macaya, Ariel, Dra. Vidal-Vera, Pía, Ulndreaj, Antigona, Hong, James, Zhou, Cindy, Fehlings, Michael
Degenerative cervical myelopathy (DCM) is caused by age-related degeneration of the cervical spine, causing chronic spinal cord compression and inflammation. The aim of this study was to assess whether the natural progression of DCM is accompanied by hematological changes in the white blood cell composition. If so, these changes can be used for diagnosis complementing established imaging approaches and for the development of treatment strategies, since peripheral immunity affects the progression of DCM. Gradual compression of the spinal cord was induced in C57B/L mice at the C5-6 level. The composition of circulating white blood cells was analyzed longitudinally at four time points after induction of DCM using flow cytometry. At 12 weeks, serum cytokine levels were measured using a Luminex x-MAP assay. Neurological impairment in the mouse model was also assessed using the ladder walk test and CatWalk. Stepping function (* p < 0.05) and overground locomotion (*** p < 0.001) were impaired in the DCM group. Importantly, circulating monocytes and T cells were affected primarily at 3 weeks following DCM. T cells were two-fold lower in the DCM group (*** p < 0.0006), whereas monocytes were four-fold increased (*** p < 0.0006) in the DCM compared with the sham group. Our data suggest that changes in white blood cell populations are modest, which is unique to other spinal cord pathologies, and precede the development of neurobehavioral symptoms.
Gut Microbiota Interaction with the Central Nervous System throughout Life
2021, Ávila-Macaya, Ariel, Vidal-Vera, Pía, Ojeda, Jorge
During the last years, accumulating evidence has suggested that the gut microbiota plays a key role in the pathogenesis of neurodevelopmental and neurodegenerative diseases via the gut–brain axis. Moreover, current research has helped to elucidate different communication pathways between the gut microbiota and neural tissues (e.g., the vagus nerve, tryptophan production, extrinsic enteric-associated neurons, and short chain fatty acids). On the other hand, altering the composition of gut microbiota promotes a state known as dysbiosis, where the balance between helpful and pathogenic bacteria is disrupted, usually stimulating the last ones. Herein, we summarize selected findings of the recent literature concerning the gut microbiome on the onset and progression of neurodevelopmental and degenerative disorders, and the strategies to modulate its composition in the search for therapeutical approaches, focusing mainly on animal models studies. Readers are advised that this is a young field, based on early studies, that is rapidly growing and being updated as the field advances.
Degenerative Cervical Myelopathy induces sex-specific dysbiosis in mice
2023, Dr. Ávila-Macaya, Ariel, Dr. Farkas-Pool, Carlos, Retamal-Fredes, Eduardo, Dra. Vidal-Vera, Pía, Fehlings, Michael
Degenerative Cervical Myelopathy (DCM) is the most common cause of spinal cord impairment in elderly populations. It describes a spectrum of disorders that cause progressive spinal cord compression, neurological impairment, loss of bladder and bowel functions, and gastrointestinal dysfunction. The gut microbiota has been recognized as an environmental factor that can modulate both the function of the central nervous system and the immune response through the microbiota-gut-brain axis. Changes in gut microbiota composition or microbiota-producing factors have been linked to the progression and development of several pathologies. However, little is known about the potential role of the gut microbiota in the pathobiology of DCM. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of DCM-induced changes in microbiota composition was assessed by 16S rRNA sequencing of the fecal samples. The immune cell composition was assessed using flow cytometry. To date, several bacterial members have been identified using BLAST against the largest collection of metagenome-derived genomes from the mouse gut. In both, female and males DCM caused gut dysbiosis compared to the sham group. However, dysbiosis was more pronounced in males than in females, and several bacterial members of the families Lachnospiraceae and Muribaculaceae were significantly altered in the DCM group. These changes were also associated with altered microbe-derived metabolic changes in propionate-, butyrate-, and lactate-producing bacterial members. Our results demonstrate that DCM causes dynamic changes over time in the gut microbiota, reducing the abundance of butyrate-producing bacteria, and lactate-producing bacteria to a lesser extent. Genome-scale metabolic modeling using gapseq successfully identified pyruvate-to-butanoate and pyruvate-to-propionate reactions involving genes such as Buk and ACH1, respectively. These results provide a better understanding of the sex-specific molecular effects of changes in the gut microbiota on DCM pathobiology.
Glycine receptor inhibition differentially affect selected neuronal populations of the developing Embryonic Cortex, as evidenced by the analysis of spontaneous calcium oscillations
2020, Dr. Ávila-Macaya, Ariel, Sánchez-Hechavarria, Miguel, Ávila, Denisse, Aedo, Eduardo, Ávila, Claudio
The embryonic developing cerebral cortex is characterized by the presence of distinctive cell types such as progenitor pools, immature projection neurons and interneurons. Each of these cell types is diverse on itself, but they all take part of the developmental process responding to intrinsic and extrinsic cues that can affect their calcium oscillations. Importantly, calcium activity is crucial for controlling cellular events linked to cell cycle progression, cell fate determination, specification, cell positioning, morphological development and maturation. Therefore, in this work we measured calcium activity in control conditions and in response to neurotransmitter inhibition. Different data analysis methods were applied over the experimental measurements including statistical methods entropy and fractal calculations, and spectral and principal component analyses. We found that developing projection neurons are differentially affected by classic inhibitory neurotransmission as a cell type and at different places compared to migrating interneurons, which are also heterogeneous in their response to neurotransmitter inhibition. This reveals important insights into the developmental role of neurotransmitters and calcium oscillations in the forming brain cortex. Moreover, we present an improved analysis proposing a Gini coefficient-based inequality distribution and principal component analysis as mathematical tools for understanding the earliest patterns of brain activity.
Optogenetic manipulation of postsynaptic cAMP using a novel transgenic mouse line enables synaptic plasticity and enhances depolarization following tetanic stimulation in the hippocampal dentate gyrus
2020, Dr. Ávila-Macaya, Ariel, Luyben, Thomas, Rai, Jayant, Li, Hang, Georgiou, John, Zhen, Mei, Collingridge, Graham, Tominaga, Takashi, Okamoto, Kenichi
cAMP is a positive regulator tightly involved in certain types of synaptic plasticity and related memory functions. However, its spatiotemporal roles at the synaptic and neural circuit levels remain elusive. Using a combination of a cAMP optogenetics approach and voltage-sensitive dye (VSD) imaging with electrophysiological recording, we define a novel capacity of postsynaptic cAMP in enabling dentate gyrus long-term potentiation (LTP) and depolarization in acutely prepared murine hippocampal slices. To manipulate cAMP levels at medial perforant path to granule neuron (MPP-DG) synapses by light, we generated transgenic (Tg) mice expressing photoactivatable adenylyl cyclase (PAC) in DG granule neurons. Using these Tg(CMV-Camk2aRFP/bPAC)3Koka mice, we recorded field excitatory postsynaptic potentials (fEPSPs) from MPP-DG synapses and found that photoactivation of PAC during tetanic stimulation enabled synaptic potentiation that persisted for at least 30 min. This form of LTP was induced without the need for GABA receptor blockade that is typically required for inducing DG plasticity. The paired-pulse ratio (PPR) remained unchanged, indicating the cAMP-dependent LTP was likely postsynaptic. By employing fast fluorescent voltage-sensitive dye (VSD: di-4-ANEPPS) and fluorescence imaging, we found that photoactivation of the PAC actuator enhanced the intensity and extent of dentate gyrus depolarization triggered following tetanic stimulation. These results demonstrate that the elevation of cAMP in granule neurons is capable of rapidly enhancing synaptic strength and neuronal depolarization. The powerful actions of cAMP are consistent with this second messenger having a critical role in the regulation of synaptic function.
Theil entropy as a non-lineal analysis for spectral inequality of physiological oscillations
2022, Carrazana Escalona, Ramón, Sánchez Hechavarría, Miguel Enrique, Ávila-Macaya, Ariel
Theil entropy is a statistical measure used in economics to quantify income inequalities. However, it can be applied to any data distribution including biological signals. In this work, we applied different spectral methods on heart rate variability signals and cellular calcium oscillations previously to Theil entropy analysis. The behavior of Theil entropy and its decomposable property was investigated using exponents in the range of [−1, 2], on the spectrum of synthetic and physiological signals. Our results suggest that the best spectral decomposition method to analyze the spectral inequality of physiological oscillations is the Lomb–Scargle method, followed by Theil entropy analysis. Moreover, our results showed that the exponents that provide more information to describe the spectral inequality in the tested signals were zero, one, and two. It was also observed that the intra-band component is the one that contributes the most to total inequality for the studied oscillations. More in detail, we found that in the state of mental stress, the inequality determined by the Theil entropy analysis of heart rate increases with respect to the resting state. Likewise, the same analytical approach shows that cellular calcium oscillations present on developing interneurons display greater inequality distribution when inhibition of a neurotransmitter system is in place. In conclusion, we propose that Theil entropy is useful for analyzing spectral inequality and to explore its origin in physiological signals.
Impaired communication at the neuromotor axis during Degenerative Cervical Myelopathy
2024, Dr. Ávila-Macaya, Ariel, Dra. Vidal-Vera, Pía, Ojeda-Orellana, Jorge, Vergara, Mayra, Henríquez, Juan, Fehlings, Michael
Degenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio—a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota.
Genome sequencing variations in the Octodon degus, an unconventional natural model of aging and Alzheimer's disease
2022, Hurley, Michael J., Urra, Claudio, Garduno, B. Maximiliano, Bruno, Agostino, Kimbell, Allison, Wilkinson, Brent, Marino Buslje, Cristina, Ezquer, Marcelo, Ezquer, Fernando, Aburto, Pedro F., Poulin, Elie, Vásquez, Rodrigo A., Deacon, Robert, Ávila-Macaya, Ariel, Deacon, Francisco, Whitney Vanderklish, Peter, Zampieri, Guido, Angione, Claudio, Constantino, Gabriele, Holmes, Todd C., Coba, Marcelo P., Xu, Xiangmin, Cogram, Patricia
The degu (Octodon degus) is a diurnal long-lived rodent that can spontaneously develop molecular and behavioral changes that mirror those seen in human aging. With age some degu, but not all individuals, develop cognitive decline and brain pathology like that observed in Alzheimer's disease including neuroinflammation, hyperphosphorylated tau and amyloid plaques, together with other co-morbidities associated with aging such as macular degeneration, cataracts, alterations in circadian rhythm, diabetes and atherosclerosis. Here we report the whole-genome sequencing and analysis of the degu genome, which revealed unique features and molecular adaptations consistent with aging and Alzheimer's disease. We identified single nucleotide polymorphisms in genes associated with Alzheimer's disease including a novel apolipoprotein E (Apoe) gene variant that correlated with an increase in amyloid plaques in brain and modified the in silico predicted degu APOE protein structure and functionality. The reported genome of an unconventional long-lived animal model of aging and Alzheimer's disease offers the opportunity for understanding molecular pathways involved in aging and should help advance biomedical research into treatments for Alzheimer's disease.
Early actions of neurotransmitters during cortex development and maturation of reprogrammed neurons
2019, Ojeda, Jorge, Ávila-Macaya, Ariel
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.