Research Outputs

Now showing 1 - 1 of 1
  • Publication
    On-sky performance of the CLASS Q-band telescope
    (The Astrophysical Journal, 2019)
    Appel, John W.
    ;
    Xu, Zhilei
    ;
    Padilla, Ivan L.
    ;
    Harrington, Kathleen
    ;
    Pradenas Marquez, BastiĂ¡n
    ;
    Ali, Aamir
    ;
    Bennett, Charles L.
    ;
    Brewer, Michael K.
    ;
    ;
    Chan, Manwei
    ;
    Chuss, David T.
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna Denes
    ;
    Dahal, Sumit
    ;
    Denis, Kevin
    ;
    DĂ¼nner, Rolando
    ;
    Eimer, Joseph R.
    ;
    Essinger Hileman, Thomas
    ;
    Fluxa, Pedro
    ;
    Gothe, Dominik
    ;
    Hilton, Gene C.
    ;
    Hubmayr, Johannes
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias A.
    ;
    Miller, Nathan J.
    ;
    NĂºĂ±ez, Carolina
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reintsema, Carl D.
    ;
    Rostem, Karwan
    ;
    Stevens, Robert W.
    ;
    Nunes Valle, Deniz Augusto
    ;
    Wang, Bingjie
    ;
    Watts, Duncan J.
    ;
    Wollack, Edward J.
    ;
    Zeng, Lingzhen
    The Cosmology Large Angular Scale Surveyor (CLASS) is mapping the polarization of the cosmic microwave background (CMB) at large angular scales (2 < ℓ lesssim 200) in search of a primordial gravitational wave B-mode signal down to a tensor-to-scalar ratio of r ≈ 0.01. The same data set will provide a near sample-variance-limited measurement of the optical depth to reionization. Between 2016 June and 2018 March, CLASS completed the largest ground-based Q-band CMB survey to date, covering over 31,000 square-degrees (75% of the sky), with an instantaneous array noise-equivalent temperature sensitivity of $32\,\mu {{\rm{K}}}_{\mathrm{cmb}}\sqrt{{\rm{s}}}$. We demonstrate that the detector optical loading (1.6 pW) and noise-equivalent power (19 $\mathrm{aW}\sqrt{{\rm{s}}}$) match the expected noise model dominated by photon bunching noise. We derive a 13.1 ± 0.3 K pW−1 calibration to antenna temperature based on Moon observations, which translates to an optical efficiency of 0.48 ± 0.02 and a 27 K system noise temperature. Finally, we report a Tau A flux density of 308 ± 11 Jy at 38.4 ± 0.2 GHz, consistent with the Wilkinson Microwave Anisotropy Probe Tau A time-dependent spectral flux density model.