Options
Dr. Bustos-Placencia, Ricardo
Nombre de publicaciĂ³n
Dr. Bustos-Placencia, Ricardo
Nombre completo
Bustos Placencia, Ricardo Arturo
Facultad
Email
rbustos@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationCLASS angular power spectra and map-component analysis for 40 GHz observations through 2022(IOP Publishing, 2024)
; ;Eimer, Joseph ;Li, Yunyang ;Brewer, Michael ;Shi, Rui ;Ali, Aamir ;Appel, John ;Bennett, Charles ;Bruno, Sarah ;Chuss, David ;Cleary, Joseph ;Dahal, Sumit ;Datta, Rahul ;Denes-Couto, Jullianna ;Denis, Kevin ;DĂ¼nner, Rolando ;Essinger-Hileman, Thomas ;FluxĂ¡, Pedro ;Hubmayer, Johannes ;Harrington, Kathleen ;Iuliano, Jeffrey ;Karakla, John ;Marriage, Tobias ;NĂºĂ±ez, Carolina ;Parker, Lucas ;Petroff, Matthew ;Reeves, Rodrigo ;Rostem, Karwan ;Valle, Deniz ;Watts, Duncan ;Weiland, Janet ;Wollack, Edward ;Xu, ZhileiZeng, LingzhenMeasurement of the largest angular scale (â„“ < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 < â„“ < 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130) uK arcmin. We measure the Galaxy-masked EE and BB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 < â„“ < 125 with the first bin showing Dâ„“ < 0.023 uK2CMB at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. - PublicationSensitivity-improved polarization maps at 40 GHz with CLASS and WMAP data(IOP Publishing, 2024)
; ;Shi, Rui ;Appel, John ;Bennett, Charles ;Chuss, David ;Dahal, Sumit ;Denes Couto, Jullianna ;Eimer, Joseph ;Essinger-Hileman, Thomas ;Harrington, Kathleen ;Iuliano, Jeffrey ;Li, Yunyang ;Marriage, Tobias ;Petroff, Matthew ;Rostem, Karwan ;Song, Zeya ;Valle, Deniz ;Watts, Duncan ;Weiland, Janet ;Wollack, EdwardXu, ZhileiImproved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial B modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining the CLASS 40 GHz and Wilkinson Microwave Anisotropy Probe (WMAP) Q-band data through a weighted average in the harmonic domain. The decision to include WMAP Q-band data stems from similarities in the bandpasses. Leveraging the accurate large-scale measurements from the WMAP Q band and the high-sensitivity information from the CLASS 40 GHz band at intermediate scales, the noise level at â„“ ä [30, 100] is reduced by a factor of 2–3 in the map space. A pixel domain analysis of the polarized synchrotron spectral index (βs) using the WMAP K band and the combined maps (mean and 16th/84th percentiles across the βs map: -3.08 +0.20-0.20) reveals a stronger preference for spatial variation (probability to exceed for a uniform βs hypothesis smaller than 0.001) than the results obtained using WMAP K and Ka bands (-3.08 +0.14-0.14). The cross-power spectra of the combined maps follow the same trend as other low-frequency data, and validation through simulations indicates negligible bias introduced by the combination method (subpercent level in the power spectra). The products of this work are publicly available on LAMBDA (https://lambda.gsfc.nasa.gov/product/class/class_prod_table.html). - PublicationCLASS Data Pipeline and Maps for 40 GHz Observations through 2022(The Astrophysical Journal, 2023)
;Yunyang Li ;JosĂ© R. Eimer ;Keisuke Osumi ;John W. Appel ;Michael K. Brewer ;Amir Ali ;Charles L. Bennett ;Sarah Marie Bruno; ;David T. Chuss ;Joseph Cleary ;Jullianna Denes Couto ;Sumit Dahal ;Rahul Datta ;Kevin L. Denis ;Rolando DĂ¼nner ;Francisco Espinoza ;Thomas Essinger-Hileman ;Pedro FluxĂ¡ Rojas ;Kathleen Harrington ;Jeffrey Iuliano ;John Karakla ;Tobias A. Marriage ;Nathan J. Miller ;Sasha Novack ;Carolina NĂºĂ±ez ;Matthew A. Petroff ;Rodrigo A. Reeves ;Karwan Rostem ;Rui Shi (??) ;Deniz A. N. Valle ;Duncan J. Watts ;Janet L. Weiland ;Edward J. Wollack ;Zhilei Xu (???)Lingzhen Zeng .The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) of EE and BB (VV ) power at â„“ = 20 and ∼35% (47%) at â„“ = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of m110 K arcmin and correlated noise component rising at low-â„“ as ℓ−2.4 . The transfer-function-corrected low-â„“ component is comparable to the white noise at the angular knee frequencies of â„“ ≈ 18 (linear polarization) and â„“ ≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matter EE power spectra. Bias from E-to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an r = 0.01 BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.