Options
Dr. Bustos-Placencia, Ricardo
Research Outputs
Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band
2020, Petroff, Matthew A., Eimer, Joseph R., Harrington, Kathleen, Ali, Aamir, Appel, John W., Bennett, Charles L., Brewer, Michael K., Bustos-Placencia, Ricardo, Chan, Manwei, Chuss, David T., Cleary, Joseph, Denes Couto, Jullianna, Dahal, Sumit, DĂ¼nner, Rolando, Essinger-Hileman, Thomas, FluxĂ¡ Rojas, Pedro, Gothe, Dominik, Iuliano, Jeffrey, Marriage, Tobias A., Miller, Nathan J., NĂºĂ±ez, Carolina, Padilla, Ivan L., Parker, Lucas, Reeves, Rodrigo, Rostem, Karwan, Nunes Valle, Deniz Augusto, Watts, Duncan J., Weiland, Janet L., Wollack, Edward J., Xu, Zhilei
The Earth’s magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarizationsensitive ground-based cosmic microwave background experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations at 32°. 3 to 43.7 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of −5°. 5 ± 0°. 6, which is consistent with the expectation of −5°.9 for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ∼20%.
Twenty years of precipitable water vapor measurements in the Chajnantor area
2020, Dr. Bustos-Placencia, Ricardo, Cortés, F., Cortés, K., Reeves, R., Radford, S.
Context. Interest in the use of the Chajnantor area for millimeter and submillimeter astronomy is increasing because of its excellent atmospheric conditions. Knowing the general site annual variability in precipitable water vapor (PWV) can contribute to the planning of new observatories in the area. Aims. We seek to create a 20-year atmospheric database (1997−2017) for the Chajnantor area in northern Chile using a single common physical unit, PWV. We plan to extract weather relations between the Chajnantor Plateau and the summit of Cerro Chajnantor to evaluate potential sensitivity improvements for telescopes fielded in the higher site. We aim to validate the use of submillimeter tippers to be used at other sites and use the PWV database to detect a potential signature for local climate change over 20 years. Methods. We revised our method to convert from submillimeter tipper opacity to PWV. We now include the ground temperature as an input parameter to the conversion scheme and, therefore, achieve a higher conversion accuracy. Reults. We found a decrease in the measured PWV at the summit of Cerro Chajnantor with respect to the plateau of 28%. In addition, we found a PWV difference of 1.9% with only 27 m of altitude difference between two sites in the Chajnantor Plateau: the Atacama Pathfinder Experiment and the Cosmic Background Imager near the Atacama Large Millimeter Array center. This difference is possibly due to local topographic conditions that favor the discrepancy in PWV. The scale height for the plateau was extracted from the measurements of the plateau and the Cerro Chajnantor summit, giving a value of 1537 m. Considering the results obtained in this work from the long-term study, we do not see evidence of PWV trends in the 20-year period of the analysis that would suggest climate change in such a timescale.