Options
Dr. Brante-Ramirez, Antonio
Nombre de publicación
Dr. Brante-Ramirez, Antonio
Nombre completo
Brante Ramirez, Antonio Javier
Facultad
Email
abrante@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationA new case of poecilogony from South America and the implications of nurse eggs, capsule structure, and maternal brooding behavior on the development of different larval typesPoecilogony is the production of different larval types within the same species. Although rare, poecilogonous species are ideal systems for testing the evolutionary and ecological implication of different developmental modes in marine invertebrates. Here, we described a new case of poecilogony, the Southern Hemisphere spionid Boccardia wellingtonensis. We used a combination of common-garden experiments, video recordings, and in vitro manipulations of individuals from three sites to (1) document the type of poecilogony, the brooding behavior of the mother, and the hatching process; (2) experimentally measure the effect of nurse eggs on the growth and type of larvae produced; and (3) document variation in the length of the brooding period, number of capsules, larvae, and nurse eggs of mothers from three sites to explore the potential for plasticity in reproductive traits. These results were compared to the previously reported poecilogonous species B. proboscidea, which resembles B. wellingtonensis in size, morphology, ecology, and reproductive strategy but differs in capsule structure. We found that in contrast to B. proboscidea, B. wellingtonensis produced larvae that, in isolation and in the presence of nurse eggs, developed into a wide range of offspring sizes. Mothers brood and hatch the larvae with frequent partial hatching of the brood during the brooding period. Although larvae could not liberate themselves, larvae crossed to other capsules as interconnections between capsules broke during the developmental period, potentially affecting food availability, sibling competition for nurse eggs, and cannibalism. Variation in brooding time and number of capsules deposited among sites suggest local adaptations.
- PublicationBioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae)(Marine Ecology, 2020)
;Doherty‐Weason, Daniel ;Oyarzun, Fernanda ;Vera, Luciano ;Bascur, Miguel ;Guzmán, Fabián ;Silva, Francisco; The level of parental investment for larval nutrition may determine the life cycle in marine invertebrate species laying egg masses or capsules, where the food available for enclosed individuals would determine time and developmental stage of hatching. Most species show a unique type of larval development. However, few species are poecilogonous and combine more than one development type. Poecilogony, although scarcely studied, allows comparing different patterns of parental reproductive investment, without the phylogenetic effect of the species ancestral modes of development (phylogenetic inertia), to help to understand the factors determining life strategy evolution in marine invertebrates. The poecilogonous polychaete worm Boccardia wellingtonensis encapsulates and incubates its offspring, which then hatches as either planktotrophic larvae or benthic juveniles; while Boccardia chilensis shows a non‐poecilogonous reproductive type, producing only planktotrophic larvae. In this work, we estimated the bioenergetic and biochemical composition of brooding and non‐brooding females of B. wellingtonensis and B. chilensis to compare the costs of reproduction in these two species. Results showed that glucose, protein, lipid, and energy content were significantly higher in non‐brooding than in brooding females of B. wellingtonensis; but also contained significantly more glucose, protein, and lipid than females of B. chilensis (in absolute and relative dry weight values). The poecilogonous species showed higher energy content previous to laying offspring. Our results support the idea that the evolution of a certain reproductive and life history traits in marine invertebrates is related to adaptations in the female's reproductive investment.