Research Outputs

Now showing 1 - 7 of 7
No Thumbnail Available
Publication

Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats

2021, Nashira Figueroa, Naily, Brante-Ramirez, Antonio, Viard, Frédérique, Leclerc, Jean-Charles

Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile as-semblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.

Thumbnail Image
Publication

Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic

2020, Leclerc, Jean-Charles, Viard, Frédérique, Mg. Gonzalez-Sepulveda, Elizabeth, Mg. Diaz-Peralta, Christian, Neira Hinojosa, José, Pérez Araneda, Karla, Silva, Francisco, Dr. Brante-Ramirez, Antonio

Biological invasions and changes in land and sea use are among the five major causes of global biodiversity decline. Shipping and ocean sprawl (multiplication of artificial structures at the expense of natural habitats) are considered as the major forces responsible for marine invasions and biotic homogenization. And yet, there is little evidence of their interplay at multiple spatial scales. Here, we aimed to examine this interaction and the extent to which the type of artificial habitat alters the distribution of native and non‐indigenous biodiversity. Location: Southeast Pacific—Central Chilean coastline.

Thumbnail Image
Publication

Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port

2021, Leclerc, Jean Charles, Brante-Ramirez, Antonio, Viard, Frédérique

Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat- builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.

No Thumbnail Available
Publication

Experimental and survey-based evidences for effective biotic resistance by predators in ports

2020, Leclerc, Jean-Charles, Viard, Frédérique, Brante-Ramirez, Antonio

Of the suite of species interactions involved in biotic resistance to species invasions, predation can have complex outcomes according to the theoretical and empirical framework of community ecology. In this study, we aimed to determine the likelihood of consumptive biotic resistance within fouling communities in four ports of central Chile. Notably, we examined the influence of micro- (> 1–2 mm, < 1–2 cm) and macro- (> 1–2 cm) predators, with a particular focus on their effects on non-indigenous species (NIS). Experimental and observational approaches were combined. An exclusion experiment was carried out over 4 months to examine predator effect on the early establishment of new assemblages on settlement panels. Later successional stages upon panels were examined over a total of 26 months and supported by rapid assessment surveys in the surrounding habitats. Community structure was significantly influenced by the exclusion treatments. Macropredators reduced the fouling biomass and abundance, although conflicting patterns emerged from the exclusion of both categories of predators. Altogether, predators reduced the abundance of most NIS and cryptogenic species, some of them being only observed when the two categories of predators were excluded—a pattern generally sustained over the long-term dynamics in community development. Our results show an effective consumptive biotic resistance, furthermore possibly dependent on predator size. Further work is however needed to determine the influence of the functional diversity of natural enemies on the efficiency of biotic resistance and its interplay with other biotic interactions (competition or mutualism). A comprehensive understanding of these processes should in turn help defining management strategies in a context of habitat modification and species loss.

Thumbnail Image
Publication

Distribution of functionally distinct native and non‐indigenous species within marine urban habitats

2023, Dr. Brante-Ramirez, Antonio, Figueroa-López, Naily, Leclerc, Jean‐Charles, Viard, Frédérique

Aim: Trait‐based approaches are powerful to examine the processes associated with biological invasions. Functional comparison among native and non‐indigenous species (NIS) can notably infer whether novel assemblages result from neutral or niche‐based assembly rules. Applying such a framework to biofouling communities, our study aimed to elucidate their distributions within two marine urban habitats (namely floating vs. nonfloating habitats). Location: Southeast Pacific—Central Chilean coastline. Methods: Here, we examined the distribution of 12 functional traits in fouling communities established on settlement plates, after 3 and 13 months of deployment in the two habitats and across ports in Central Chile. Based upon previously described differences of assemblages and NIS contribution across habitats, we hypothesized that nonindigenous, cryptogenic and native taxon pools would be functionally distinct (and trait biased), and that functional diversity and structure would vary across habitats and successional stages. Results: Our results show, as anticipated, that nonindigenous (13 taxa), cryptogenic (12) and native (18) taxon pools are functionally distinct, though overlapping in the trait space. Non‐indigenous species are rather related to colonizing traits, while native species are more related to competitive traits. Only one widespread NIS was functionally similar to the late successional and most competitive native species, including taxa elsewhere invasives. Despite differences in taxonomic composition between habitats, we did not observe functional differences between them. In contrast, temporal variations across colonization stages were detected along with an increased contribution in large and long‐lived taxa, together with site‐specific trajectories. Main Conclusions: We conclude that the functional distinctness among nonindigenous, cryptogenic and native taxa occupying artificial habitats in ports reflects niche‐based processes. Site‐specific trajectories indicate that scale‐dependent assembly processes, such as dispersal and species interactions, are at play.

No Thumbnail Available
Publication

Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile

2018, Leclerc, Jean-Charles, Viard, Frédérique, Gonzalez-Sepulveda, Elizabeth, Diaz-Peralta, Christian, Neira Hinojosa, José, Pérez Araneda, Claudia, Silva, Francisco, Brante-Ramirez, Antonio

Growing coastal urbanization together with the intensification of maritime traffic are major processes explaining the increasing rate of biological introductions in marine environments. To investigate the link between international maritime traffic and the establishment of non-indigenous species (NIS) in coastal areas, biofouling communities in three international and three nearby local ports along 100 km of coastline in south-central Chile were compared using settlement panels and rapid assessment surveys. A larger number of NIS was observed in international ports, as expected in these ‘invasion hubs’. However, despite a few environmental differences between international and local ports, the two port categories did not display significant differences regarding NIS establishment and contribution to community structure over the studied period (1.5 years). In international ports, the free space could be a limiting factor for NIS establishment. The results also suggest that local ports should be considered in NIS surveillance programs in Chile.

Thumbnail Image
Publication

Investigating the risk of non-indigenous species introduction through ship hulls in Chile

2023, Pinochet, Javier, Brante-Ramirez, Antonio, Tellier, Florence, Daguin-Thiébaut, Claire, Viard, Frédérique

Ship hull fouling is recognized as an important vector for the introduction of nonindigenous species (NIS), which has been studied globally but no empirical works exist in the Southeast Pacific. The present study examined fouling organisms on the hulls of three ships in one international Chilean port, and compared them with those on settling plates and natural substrates. Also, genetic analyses were perfomed on the most common NIS recorded in order to explore number and potential origin of the genetic linages found. The highest number of total taxa and NIS were found on ship hulls, with three species identified as NIS in ship samplings. Settling plates displayed the largest number of taxa, with a large abundance of the invasive tunicate Ciona robusta, which also showed high mitochondrial genetic diversity. This study showed that Chilean coasts are subjected to both NIS colonization and propagule pressure through ship hulls. Biosecurity measures should urgently be taken on ship hulls along these coasts.