Options
Dr. Brante-Ramirez, Antonio
Research Outputs
Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats
2021, Nashira Figueroa, Naily, Brante-Ramirez, Antonio, Viard, Frédérique, Leclerc, Jean-Charles
Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile as-semblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.
Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port
2021, Leclerc, Jean Charles, Brante-Ramirez, Antonio, Viard, Frédérique
Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat- builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.
Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic
2020, Leclerc, Jean-Charles, Viard, Frédérique, Mg. Gonzalez-Sepulveda, Elizabeth, Mg. Diaz-Peralta, Christian, Neira Hinojosa, José, Pérez Araneda, Karla, Silva, Francisco, Dr. Brante-Ramirez, Antonio
Biological invasions and changes in land and sea use are among the five major causes of global biodiversity decline. Shipping and ocean sprawl (multiplication of artificial structures at the expense of natural habitats) are considered as the major forces responsible for marine invasions and biotic homogenization. And yet, there is little evidence of their interplay at multiple spatial scales. Here, we aimed to examine this interaction and the extent to which the type of artificial habitat alters the distribution of native and non‐indigenous biodiversity. Location: Southeast Pacific—Central Chilean coastline.
Distribution of functionally distinct native and non‐indigenous species within marine urban habitats
2023, Dr. Brante-Ramirez, Antonio, Figueroa-López, Naily, Leclerc, Jean‐Charles, Viard, Frédérique
Aim: Trait‐based approaches are powerful to examine the processes associated with biological invasions. Functional comparison among native and non‐indigenous species (NIS) can notably infer whether novel assemblages result from neutral or niche‐based assembly rules. Applying such a framework to biofouling communities, our study aimed to elucidate their distributions within two marine urban habitats (namely floating vs. nonfloating habitats). Location: Southeast Pacific—Central Chilean coastline. Methods: Here, we examined the distribution of 12 functional traits in fouling communities established on settlement plates, after 3 and 13 months of deployment in the two habitats and across ports in Central Chile. Based upon previously described differences of assemblages and NIS contribution across habitats, we hypothesized that nonindigenous, cryptogenic and native taxon pools would be functionally distinct (and trait biased), and that functional diversity and structure would vary across habitats and successional stages. Results: Our results show, as anticipated, that nonindigenous (13 taxa), cryptogenic (12) and native (18) taxon pools are functionally distinct, though overlapping in the trait space. Non‐indigenous species are rather related to colonizing traits, while native species are more related to competitive traits. Only one widespread NIS was functionally similar to the late successional and most competitive native species, including taxa elsewhere invasives. Despite differences in taxonomic composition between habitats, we did not observe functional differences between them. In contrast, temporal variations across colonization stages were detected along with an increased contribution in large and long‐lived taxa, together with site‐specific trajectories. Main Conclusions: We conclude that the functional distinctness among nonindigenous, cryptogenic and native taxa occupying artificial habitats in ports reflects niche‐based processes. Site‐specific trajectories indicate that scale‐dependent assembly processes, such as dispersal and species interactions, are at play.