Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review
    (Elsevier, 2022) ;
    Rodríguez, Andrés
    ;
    Farías-Jofré, Marcelo
    ;
    Araya, Juan
    ;
    Guzmán-Gutiérrez, Enrique
    Gestational Diabetes Mellitus (GDM) is a hyperglycemia state that impairs maternal and offspring health, short and long-term. It is usually diagnosed at 24–28 weeks of pregnancy (WP), but at that time the fetal phenotype is already altered. Machine learning (ML)-based models have emerged as an auspicious alternative to predict this pathology earlier, however, they must be validated in different populations before their implementation in routine clinical practice. This review aims to give an overview of the ML-based models that have been proposed to predict GDM before 24–28 WP, with special emphasis on their current validation state and predictive performance. Articles were searched in PubMed. Manuscripts written in English and published before January 1, 2022, were considered. 109 original research studies were selected, and categorized according to the type of variables that their models involved: medical, i.e. clinical and/or biochemical parameters; alternative, i.e. metabolites, peptides or proteins, micro-ribonucleic acid molecules, microbiota genera, or other variables that did not fit into the first category; or mixed, i.e. both medical and alternative data. Only 8.3 % of the reviewed models have had validation in independent studies, with low or moderate performance for GDM prediction. In contrast, several models that lack of independent validation have shown a very high predictive power. The evaluation of these promising models in future independent validation studies would allow to assess their performance on different populations, and continue their way towards clinical implementation. Once settled, ML-based models would help to predict GDM earlier, initiate its treatment timely and prevent its negative consequences on maternal and offspring health.
  • Thumbnail Image
    Publication
    Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications
    (Frontiers, 2023) ;
    Rodríguez, Andrés
    ;
    Opazo, Maria Cecilia
    ;
    Riedel, Claudia A
    ;
    Castro, Erica
    ;
    Eriz-Salinas Alma
    ;
    Appel-Rubio, Javiera
    ;
    Aguayo, Claudio
    ;
    Damiano, Alicia E
    ;
    Guzmán-Gutiérrez, Enrique
    ;
    Araya, Juan
    Introduction: Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. Aim: To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Methodology: Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. Current state: ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening. data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. Future challenges: To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. Conclusion: The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.