Options
Dr. Espinosa-Neira, Eduardo
Nombre de publicaciĂ³n
Dr. Espinosa-Neira, Eduardo
Nombre completo
Espinosa Neira, Eduardo Enrique
Facultad
Email
eespinosa@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationMulticell AFE rectifier managed by finite control set–model predictive control(IEEE, 2021)
; ;Garces-Hernandez, Hugo ;Melin, Pedro ;Baier, CarlosEspinoza, JoseMulticell converters, based on power cells that use low-voltage semiconductors, implement AC motor drives for medium-and high-voltage applications. These converters feature an input multipulse transformer, which performs low-frequency harmonics cancelation generated by three-phase diode rectifiers in the power cells. Despite this advantage, the multipulse transformer is bulky, heavy, expensive, and must be designed according to the number of power cells required by a specific case, limiting the modularity of the topology. This work proposes a multicell converter based on power cells that requires a standard input transformer and uses active front-end rectifiers controlled by employing a finite control set-model predictive control algorithm. The proposed approach emulates the multipulse transformer harmonic cancelation owing to the predictive algorithm operation combined with input current references that are phase-shifted for each active front-end rectifier. Simultaneously, the DC voltages of the power cells are regulated and equalized among the cells using PI regulators. Experimental results confirm the feasibility of the proposed system as input currents in each Multicell AFE rectifier with a unitary displacement factor, and a low THD of 1.87% was obtained. It is then possible to replace the input multipulse transformer with standard ones while reducing the copper losses, reducing the K factor, and extending the modularity of the power cell to the input transformer. - PublicationReduction of DC capacitor size in Three-Phase Input/Single-Phase Output power cells of multi-cell converters through Resonant and Predictive Control: A characterization of its impact on the operating region(Mathematics, 2023)
;RamĂrez, Roberto ;Baier, Carlos ;Villarroel,Felipe; ;Arevalo, MauricioEspinoza, JoseCascaded H-bridge drives require using a significant-size capacitor on each cell to deal with the oscillatory power generated by the H-bridge inverter in the DC-link. This results in a bulky cell with reduced reliability due to the circulating second harmonic current through the DC-link capacitors. In this article, a control strategy based on a finite control set model predictive control and a proportional-resonant controller is proposed to compensate for the oscillatory power required by the H-bridge inverter through the cell’s input rectifier. With the proposed strategy, a DC-link second harmonic free operation is achieved, allowing for the possibility of reducing the capacitor size and, in consequence, the cell dimensions. The feasibility of the proposed control scheme is verified by experimental results in one cell of a cascade H-bridge inverter achieving an operation with a capacitance 141 times smaller than required by conventional control approaches for the same voltage ripple.