Research Outputs

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Microgrid power sharing framework for software defined networking and cybersecurity analysis
    (IEEE, 2022) ;
    Perez-Guzman, Ricardo
    ;
    Rivera, Marco
    ;
    Wheeler, Patrick
    ;
    Mirzaeva, Galina
    ;
    Rohten, Jaime
    Hierarchical control is a widely used strategy that can increase resilience and improve the reliability of the electrical network based on microgrid global variables. The large amounts of data required during transitions prompt the use of more reliable and flexible communications to achieve the control objectives. Such communications can involve potential cyber vulnerabilities and latency restrictions, which cannot be always addressed in real-time. To accurately capture the system’s overall operation, this paper proposes a co-simulation framework driven by flexible communications and a resilient control algorithm to regulate the frequency and voltage deviations in a networked microgrid. Model-based predictive control has been implemented, to avoid slow transient response associated with linear hierarchical control. Software-Defined Networking (SDN) is responsible for increasing the communication intelligence during the power-sharing process. The effects of critical communications and overall system performance are reviewed and compared for different co-simulation scenarios. Graphical Network Simulator (GNS3) is used in combination with model-based predictive control and SDN, to provide latency below 100 ms, as defined in IEC 61850. Testing of the proposed system under different cyber attack scenarios demonstrate its excellent performance. The novel control architecture presented in the paper provides a reference framework for future cloud computing-based microgrids.
  • Publication
    Model predictive control for power converters in a distorted three-phase power supply
    (IEEE, 2016) ;
    Rohten, Jaime
    ;
    Espinoza, Jose
    ;
    Munoz, Javier
    ;
    PĂ©rez, Marcelo
    ;
    Melin, Pedro
    ;
    Silva, Jose
    ;
    Rivera, Marco
    The interest on weak and micro-grid systems has grown up substantially last time, specially tied up to distributed power generation systems (DPGSs), isolated systems as aircraft, or islanding power systems. These kinds of grids are usually under significant variation in their quantities, specifically in their voltage amplitude and/or frequency. On this line, many studies about synchronization methods have been developed, which may work under variations on the frequency value, unbalanced voltage, and even with harmonic distortion. However, power converters connected to this class of systems are poorly documented-specifically controlled rectifiers. In fact, most of the controlled grid connected converters (GCCs) are defined to work in a fixed frequency and balanced system. This paper deals with a GCC connected to a variable-frequency and unbalanced voltage supply system control through a predictive algorithm with a fixed resolution sampling strategy. Furthermore, the current references are imposed in order to help the weak-grid source subjected to unbalancing, taking more power from the phase with highest voltage amplitude and relaxing the other phases. This issue makes to calculate every phase current reference independently and accordingly the voltage amplitudes keep the dc-link voltage in a desired value. The results show the feasibility of the proposed algorithm, where the performance is highlighted by simulated and experimental waveforms.
  • Thumbnail Image
    Publication
    Improved feedback quantizer with discrete space vector
    (MDPI, 2024) ;
    Veillon, MatĂ­as
    ;
    Melin, Pedro
    ;
    Mirzaeva, Galina
    ;
    Rivera, Marco
    ;
    Baier, Carlos
    ;
    Ramirez, Roberto
    The use of advanced modulation and control schemes for power converters, such as a Feedback Quantizer and Predictive Control, is widely studied in the literature. This work focuses on improving the closed-loop modulation scheme called Feedback Quantizer, which is applied to a three-phase voltage source inverter. This scheme has the natural behavior of mitigating harmonics at low frequencies, which are detrimental to electrical equipment such as transformers. This modulation scheme also provides good tracking for the voltage reference at the fundamental frequency. On the other hand, the disadvantage of this scheme is that it has a variable switching frequency, creating a harmonic spectrum in frequency dispersion, and it also needs a small sampling time to obtain good results. The proposed scheme to improve the modulation scheme is based on a Discrete Space Vector with virtual vectors to obtain a better approximation of the optimal vectors for use in the algorithm. The proposal improves the conventional scheme at a high sampling time (200 μs), obtaining a THD less than 2% in the load current, decreases the noise created by the conventional scheme, and provides a fixed switching frequency. Experimental tests demonstrate the correct operation of the proposed scheme.
  • Thumbnail Image
    Publication
    FCS–MPC with nonlinear control applied to a multicell AFE rectifier
    (Sensors, 2022) ;
    Espinoza, José
    ;
    MelĂ­n, Pedro
    ;
    Rohten, Jaime
    ;
    Rivera, Marco
    ;
    Muñoz, Javier
    The use of controlled power converters has been extended for high power applications, stacking off-the-shelve semiconductors, and allowing the implementation of, among others, AC drives for medium voltages of 2.3 kV to 13.8 kV. For AC drives based on power cells assembled with three-phase diode rectifiers and cascaded H-bridge inverters, a sophisticated input multipulse transformer is required to reduce the grid voltage, provide isolation among the power cells, and compensate for low-frequency current harmonics generated by the diode-based rectifiers. However, this input multipulse transformer is bulky, heavy, and expensive and must be designed according to the number of power cells, not allowing total modularity of the AC drives based on cascade H-bridges. This study proposes and evaluates a control strategy based on a finite control set-model predictive control that emulates the harmonic cancellation performed by an input multipulse transformer in a cascade H-bridge topology. Hence, the proposed method requires conventional input transformers and replaces the three-phase diode rectifiers. As a result, greater modularity than the conventional multicell converter and improved AC overall input current with a THD as low as 2% with a unitary displacement power factor are achieved. In this case, each power cell manages its own DC voltage using a nonlinear control strategy, ensuring stable system operation for passive and regenerative loads. The experimental tests demonstrated the correct performance of the proposed scheme.