Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem
    (Numerical Methods for Partial Differential Equations, 2021) ;
    García, Carlos
    ;
    Oyarzúa, Ricardo
    In this paper, we propose and analyze a new momentum conservative mixed finite element method for the Navier–Stokes problem posed in nonstandard Banach spaces. Our approach is based on the introduction of a pseudostress tensor relating the velocity gradient with the convective term, leading to a mixed formulation where the aforementioned pseudostress tensor and the velocity are the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree K for the pseudostress tensor and discontinuous piece–wise polynomial elements of degree K for the velocity. With this choice of spaces, the equilibrium equation is exactly satisfied if the external force belongs to the velocity discrete space, thus the method conserves momentum, which constitutes one of the main feature of our approach. For both, the continuous and discrete problems, the Banach–Nečas–Babuška and Banach's fixed-point theorems are employed to prove unique solvability. We also provide the convergence analysis and particularly prove that the error decay with optimal rate of convergence. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. Finally, several numerical results illustrating the performance of the method are provided.
  • Publication
    Analysis of a new mixed FEM for stationary incompressible magneto-hydrodynamics
    (Computers and Mathematics with Applications, 2022) ;
    García, Carlos
    ;
    Oyarzúa, Ricardo
    In this paper we propose and analyze a new mixed finite element method for a stationary magneto-hydrodynamic (MHD) model. The method is based on the utilization of a new dual-mixed formulation recently introduced for the Navier-Stokes problem, which is coupled with a classical primal formulation for the Maxwell equations. The latter implies that the velocity and a pseudostress tensor relating the velocity gradient with the convective term for the hydrodynamic equations, together with the magnetic field and a Lagrange multiplier related with the divergence-free property of the magnetic field, become the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the aforementioned pseudostress tensor, discontinuous piecewise polynomial elements of degree k for the velocity, Nédélec elements of degree k for the magnetic field and Lagrange elements of degree k for the associated Lagrange multiplier. The analysis of the continuous and discrete problems are carried out by means of the Lax–Milgram lemma, the Banach–Nečas–Babuška and Banach fixed-point theorems, under a sufficiently small data assumption. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption on mesh. We also develop an a priori error analysis and show that the proposed finite element method is optimal convergent. Finally, some numerical results illustrating the good performance of the method are provided.