Options
Dra. Azócar-Ulloa, Laura
Research Outputs
Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application
2020, Duarte-Nass, Carla, Rebolledo, Katherina, Valenzuela, Tamara, Kopp, Matías, Jeison, David, Rivas, Mariella, Azócar-Ulloa, Laura, Torres-Aravena, Álvaro, Ciudad, Gustavo
Copper contamination in watercourses is a recent issue in countries where mining operations are prevalent. In this study, the application of copper precipitation through microbe-induced carbonate precipitation (MICP) was analyzed using urea hydrolysis by bacteria to evaluate precipitated copper carbonates. This article demonstrates the application of a copper precipitation assay involving Sporosarcina pasteurii (in 0.5 mM Cu2þ and 333 mM urea) and analyzes the resultant low removal (10%). The analysis indicates that the low removal was a consequence of Cu2þ complexation with the ammonia resulting from the hydrolysis of urea. However, the results indicate that there should be a positive correlation between the initial urea concentration and the bacterial tolerance to copper. This identifies a challenge in the industrial application of the process, wherein a minimum consumption of urea represents an economic advantage. Therefore, it is necessary to design a sequential process that decouples bacterial growth and copper precipitation, thereby decreasing the urea requirement.
Fly ash as a new versatile acid-base catalyst for biodiesel production
2020, Dra. Azócar-Ulloa, Laura, Dra. Valdebenito-Escobar, Fabiola, Muñoz, Robinson, González, Aixa, Ciudad, Gustavo, Navia, Rodrigo, Pecchi, Gina
The production of fatty acid methyl esters (FAME) from waste frying oil (WFO) was studied using fly ash as received as a heterogeneous catalyst. The fly ash used in this research had a high content of both CaO and SO3, two compounds that have been previously proposed as catalysts in FAME production. The study was carried out on the basis of a response surface methodology (RSM). The model generated by RSM predicted as optimal conditions to obtain a 100% FAME yield at a methanol-to-oil molar ratio of 3.1:1, 11.2 (wt.% based on oil weight) fly ash and a temperature of 59 C with agitation at 245 rpm and 6 h of reaction time. Additional experiments comparing anhydrous with aqueous medium showed that fly ash presented a high catalytic capacity to transform free fatty acids (FFA) into FAME through consecutive hydrolysis and esterification processes (hydroesterification) compared with that associated with the transesterification mechanism. According to the results, the fly ash used in this study would act as a multipurpose or “versatile” catalyst due to its chemical composition with constituents that act as acidic and basic catalysts, therefore, catalyzing the transesterification and hydroesterification reactions simultaneously and increasing the conversion yields of FAME.