Research Outputs

Now showing 1 - 3 of 3
  • Publication
    Carbonization of microalgae for bio-coal production as a solid biofuel similar to bituminous coal
    (Elsevier, 2021)
    Guajardo, Daniela
    ;
    Valdebenito Escobar, Fabiola Alejandra
    ;
    Díaz, Juan
    ;
    Cifuentes, Gerald
    ;
    The carbonization of Nannochloropsis gaditana microalgae biomass was found to produce bio-coal that is similar to bituminous coal used in thermal power plants. Currently, microalgae that capture CO2 while they are in the growth stage are considered a source for the production of biofuels. The carbonization of biomass for producing bio-coal has received attention for its ability to improve the biomass quality for producing solid biofuels. The research was focused on optimizing a fixed carbon index (FCindex), which allows finding operational conditions of carbonization to favor the fixed carbon content without significantly affecting the bio-coal yield. The optimization carried out by response surface methodology in a thermogravimetric analyzer allowed the prediction of optimal carbonization conditions to achieve an FCindex of 191% at 403 °C, 71 °C/min, and 60 min of residence time. The bio-coal produced under optimized conditions was characterized by 59% of fixed carbon and 41% of volatiles on a dry and ash-free basis, which is similar to bituminous coal. The promising results of dry carbonization producing bio-coal similar to bituminous coal could promote this technology, avoiding the necessity of hydrothermal carbonization. Because a high ash content was detected in the final product, further studies using the optimized conditions and a washing step should be conducted.
  • Publication
    Brown pellet production using wheat straw from southern cities in Chile
    (FUEL, 2019) ;
    Hermosilla, Ninoska
    ;
    Gay, Antonia
    ;
    Rocha, Sebastián
    ;
    Díaz, Juan
    ;
    Jara, Paulina
    In this study, the torrefaction process was optimized to improve the energy yield (Yenergy) in wheat straw pellet production. Wheat is the main agricultural product of Chile and cultivated in approximately 262 000 ha of land. Additionally, solid biofuel alternatives are necessary in the southern cities of Chile to reduce the pollution produced by low-quality firewood used as fuel. That being the case, it appears that wheat straw is a feasible raw material for solid biofuel production. In the current study, the torrefaction of wheat straw was optimized in a thermogravimetric analyzer using the response surface methodology (RSM). The polynomial model generated from the RSM study showed that heating rate and temperature were significant variables on the response variable, Yenergy; time was insignificant. It was shown that a decrease in temperature of up to 130 °C resulted in an enhancement of the Yenergy value, and at the aforementioned temperature, a low heating rate improved Yenergy. Following the conditions predicted by the model, torrefaction assays were conducted in a bench scale reactor under light torrefaction conditions: a torrefaction temperature of 145 °C, heating rate of 3 °C/min, and final torrefaction time of 50 min. The torrefied biomass was employed in a pellet production process that was performed in a pilot plant facility. The pellet produced from the torrefied biomass under light torrefaction conditions was named “brown pellet” because of its color. Most of the pellet properties satisfy the Standards for Industrial pellets (ISO 17225-6). This showed that light torrefaction temperature can be a potential pretreatment to achieve a commercial production process. Finally, an interesting result was obtained—the bulk density of brown pellets (568 ± 8 kg/m3) was considerably higher compared to that of wheat straw pellets (469 ± 8 kg/m3). This was probably caused by an increment in grinding characteristics. Further studies that focus on identifying the effects of light torrefaction conditions on the mechanical properties of wheat straw pellets should be conducted.
  • Publication
    Investigating the properties of shrub biomass pellets through additive and sawdust admixing
    (Elsevier, 2024) ;
    Espinoza-Monje, José
    ;
    Lazo-Andrade, Jorge
    ;
    Muñoz-González, Robinson
    ;
    Saiz-Rueda, Gustavo
    ;
    Garcés, Hugo
    ;
    Díaz, Juan
    ;
    Adam, Roman
    ;
    Coronado, Matías
    This study investigated pellets produced using shrub biomass blended with pine sawdust to improve their physical and combustion properties by incorporating additives. First, the properties of pellets produced at different temperatures were analyzed. Pellets produced using pine sawdust blended with Teline monspessulana and Ulex europaeus biomasses (80/20 %m/m) exhibited good properties when prepared at 50–60 ◦C, whereas pellets produced using Rubus ulmifolius exhibited better characteristics at lower temperatures. The results showed that further studies on the physical properties and operational conditions of biomass from Ulex europaeus and Rubus ulmifolius are required. Furthermore, pellets blended with Teline monspessulana were evaluated using starch and lignin as binders, which exhibited all the physical properties of ISO 17225–6 when 1 wt% lignin was added owing to the stronger bonding induced by the additive. Because the fuel indices indicated a high corrosion risk, the additive CaO was used to improve the combustion performance of pellets blended with Teline monspessulana biomass and binders. The content of particulate matter smaller than 2.5 and 10 μm decreased by approximately 50%, and the crystallinity of the bottom ash, which usually contains undesirable elements, was improved by adding 1 wt% CaO, which raised the melting temperature of the ash.