Research Outputs

Now showing 1 - 5 of 5
  • Publication
    Carbonization of microalgae for bio-coal production as a solid biofuel similar to bituminous coal
    (Elsevier, 2021)
    Guajardo, Daniela
    ;
    Valdebenito Escobar, Fabiola Alejandra
    ;
    Díaz, Juan
    ;
    Cifuentes, Gerald
    ;
    The carbonization of Nannochloropsis gaditana microalgae biomass was found to produce bio-coal that is similar to bituminous coal used in thermal power plants. Currently, microalgae that capture CO2 while they are in the growth stage are considered a source for the production of biofuels. The carbonization of biomass for producing bio-coal has received attention for its ability to improve the biomass quality for producing solid biofuels. The research was focused on optimizing a fixed carbon index (FCindex), which allows finding operational conditions of carbonization to favor the fixed carbon content without significantly affecting the bio-coal yield. The optimization carried out by response surface methodology in a thermogravimetric analyzer allowed the prediction of optimal carbonization conditions to achieve an FCindex of 191% at 403 °C, 71 °C/min, and 60 min of residence time. The bio-coal produced under optimized conditions was characterized by 59% of fixed carbon and 41% of volatiles on a dry and ash-free basis, which is similar to bituminous coal. The promising results of dry carbonization producing bio-coal similar to bituminous coal could promote this technology, avoiding the necessity of hydrothermal carbonization. Because a high ash content was detected in the final product, further studies using the optimized conditions and a washing step should be conducted.
  • Thumbnail Image
    Publication
    Testing the Capacity of Staphylococcus Equorum for Calcium and Copper Removal through MICP process
    (minerals, 2021)
    Sepúlveda, Sebastián
    ;
    Duarte-Nass, Carla
    ;
    Rivas, Mariella
    ;
    ;
    Ramírez, Andrés
    ;
    Toledo-Alarcón, Javiera
    ;
    Gutiérrez, Leopoldo
    ;
    Jeison, David
    ;
    Torres Aravena, Álvaro
    This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.
  • Publication
    Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application
    (Journal of Environmental Management, 2020)
    Duarte-Nass, Carla
    ;
    Rebolledo, Katherina
    ;
    Valenzuela, Tamara
    ;
    Kopp, Matías
    ;
    Jeison, David
    ;
    Rivas, Mariella
    ;
    ;
    Torres-Aravena, Álvaro
    ;
    Ciudad, Gustavo
    Copper contamination in watercourses is a recent issue in countries where mining operations are prevalent. In this study, the application of copper precipitation through microbe-induced carbonate precipitation (MICP) was analyzed using urea hydrolysis by bacteria to evaluate precipitated copper carbonates. This article demonstrates the application of a copper precipitation assay involving Sporosarcina pasteurii (in 0.5 mM Cu2þ and 333 mM urea) and analyzes the resultant low removal (10%). The analysis indicates that the low removal was a consequence of Cu2þ complexation with the ammonia resulting from the hydrolysis of urea. However, the results indicate that there should be a positive correlation between the initial urea concentration and the bacterial tolerance to copper. This identifies a challenge in the industrial application of the process, wherein a minimum consumption of urea represents an economic advantage. Therefore, it is necessary to design a sequential process that decouples bacterial growth and copper precipitation, thereby decreasing the urea requirement.
  • Publication
    Fly ash as a new versatile acid-base catalyst for biodiesel production
    (Elsevier, 2020) ; ;
    Muñoz, Robinson
    ;
    González, Aixa
    ;
    Ciudad, Gustavo
    ;
    Navia, Rodrigo
    ;
    Pecchi, Gina
    The production of fatty acid methyl esters (FAME) from waste frying oil (WFO) was studied using fly ash as received as a heterogeneous catalyst. The fly ash used in this research had a high content of both CaO and SO3, two compounds that have been previously proposed as catalysts in FAME production. The study was carried out on the basis of a response surface methodology (RSM). The model generated by RSM predicted as optimal conditions to obtain a 100% FAME yield at a methanol-to-oil molar ratio of 3.1:1, 11.2 (wt.% based on oil weight) fly ash and a temperature of 59 C with agitation at 245 rpm and 6 h of reaction time. Additional experiments comparing anhydrous with aqueous medium showed that fly ash presented a high catalytic capacity to transform free fatty acids (FFA) into FAME through consecutive hydrolysis and esterification processes (hydroesterification) compared with that associated with the transesterification mechanism. According to the results, the fly ash used in this study would act as a multipurpose or “versatile” catalyst due to its chemical composition with constituents that act as acidic and basic catalysts, therefore, catalyzing the transesterification and hydroesterification reactions simultaneously and increasing the conversion yields of FAME.
  • Publication
    Biomass quality index: Searching for suitable biomass as an energy source in Chile
    (Fuel, 2020)
    Rocha, Sebastián
    ;
    Candia, Óscar
    ;
    Valdebenito, Fabiola
    ;
    Espinoza-Monje, J. Flavio
    ;
    A Biomass Quality Index (BQI) developed using a previously reported tool was shown to be a promising method to rank biomass suitable for solid biofuel production. The BQI was developed by selecting 12 chemical parameters to be analyzed among ten available biomasses produced in the north, central and south of Chile. Furthermore, a Parameter Quality Index (PQI) was calculated to estimate the contribution of each parameter in the BQI. The sum of all PQIs for each biomass allowed the BQI to be determined, and biomasses with lower BQIs were more highly ranked. The results showed that the first 3 ranks were dominated by biomasses collected in central Chile, hazelnut shell, cherry pits and corn cobs (BQI ≤ 16.1). Furthermore, a promising candidate that was ranked fourth place was wheat straw (BQI = 17.7), which may be able to be used the highly polluted southern zone. Meanwhile, grass and the microalgae N. gaditana were ranked last (BQI ≥ 69.5). The low BQI obtained for the studied biomasses were related to their low PQIs regarding moisture content, low trace element content, low ash percentage and high carbon content and HHV. By contrast, high BQI values were related to high PQIs for moisture, Cl, Na and K content. K had a high contribution and Cu had a low contribution in the index. Due to the difficulty of milling the top ranked biomass, further studies should include a grindability analysis orother physical parameters to complete the BQI methodology.