Research Outputs

Now showing 1 - 10 of 12
  • Publication
    Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application
    (Journal of Environmental Management, 2020)
    Duarte-Nass, Carla
    ;
    Rebolledo, Katherina
    ;
    Valenzuela, Tamara
    ;
    Kopp, Matías
    ;
    Jeison, David
    ;
    Rivas, Mariella
    ;
    ;
    Torres-Aravena, Álvaro
    ;
    Ciudad, Gustavo
    Copper contamination in watercourses is a recent issue in countries where mining operations are prevalent. In this study, the application of copper precipitation through microbe-induced carbonate precipitation (MICP) was analyzed using urea hydrolysis by bacteria to evaluate precipitated copper carbonates. This article demonstrates the application of a copper precipitation assay involving Sporosarcina pasteurii (in 0.5 mM Cu2þ and 333 mM urea) and analyzes the resultant low removal (10%). The analysis indicates that the low removal was a consequence of Cu2þ complexation with the ammonia resulting from the hydrolysis of urea. However, the results indicate that there should be a positive correlation between the initial urea concentration and the bacterial tolerance to copper. This identifies a challenge in the industrial application of the process, wherein a minimum consumption of urea represents an economic advantage. Therefore, it is necessary to design a sequential process that decouples bacterial growth and copper precipitation, thereby decreasing the urea requirement.
  • Publication
    Fly ash as a new versatile acid-base catalyst for biodiesel production
    (Elsevier, 2020) ; ;
    Muñoz, Robinson
    ;
    González, Aixa
    ;
    Ciudad, Gustavo
    ;
    Navia, Rodrigo
    ;
    Pecchi, Gina
    The production of fatty acid methyl esters (FAME) from waste frying oil (WFO) was studied using fly ash as received as a heterogeneous catalyst. The fly ash used in this research had a high content of both CaO and SO3, two compounds that have been previously proposed as catalysts in FAME production. The study was carried out on the basis of a response surface methodology (RSM). The model generated by RSM predicted as optimal conditions to obtain a 100% FAME yield at a methanol-to-oil molar ratio of 3.1:1, 11.2 (wt.% based on oil weight) fly ash and a temperature of 59 C with agitation at 245 rpm and 6 h of reaction time. Additional experiments comparing anhydrous with aqueous medium showed that fly ash presented a high catalytic capacity to transform free fatty acids (FFA) into FAME through consecutive hydrolysis and esterification processes (hydroesterification) compared with that associated with the transesterification mechanism. According to the results, the fly ash used in this study would act as a multipurpose or “versatile” catalyst due to its chemical composition with constituents that act as acidic and basic catalysts, therefore, catalyzing the transesterification and hydroesterification reactions simultaneously and increasing the conversion yields of FAME.
  • Publication
    Carbonization of microalgae for bio-coal production as a solid biofuel similar to bituminous coal
    (Elsevier, 2021)
    Guajardo, Daniela
    ;
    Valdebenito Escobar, Fabiola Alejandra
    ;
    Díaz, Juan
    ;
    Cifuentes, Gerald
    ;
    The carbonization of Nannochloropsis gaditana microalgae biomass was found to produce bio-coal that is similar to bituminous coal used in thermal power plants. Currently, microalgae that capture CO2 while they are in the growth stage are considered a source for the production of biofuels. The carbonization of biomass for producing bio-coal has received attention for its ability to improve the biomass quality for producing solid biofuels. The research was focused on optimizing a fixed carbon index (FCindex), which allows finding operational conditions of carbonization to favor the fixed carbon content without significantly affecting the bio-coal yield. The optimization carried out by response surface methodology in a thermogravimetric analyzer allowed the prediction of optimal carbonization conditions to achieve an FCindex of 191% at 403 °C, 71 °C/min, and 60 min of residence time. The bio-coal produced under optimized conditions was characterized by 59% of fixed carbon and 41% of volatiles on a dry and ash-free basis, which is similar to bituminous coal. The promising results of dry carbonization producing bio-coal similar to bituminous coal could promote this technology, avoiding the necessity of hydrothermal carbonization. Because a high ash content was detected in the final product, further studies using the optimized conditions and a washing step should be conducted.
  • Thumbnail Image
    Publication
    Catalytic Selective Oxidation of β-O-4 Bond in Phenethoxybenzene as a Lignin Model Using (TBA)5[PMo10V2O40] Nanocatalyst: Optimization of Operational Conditions
    (Molecules, 2023)
    Díaz, Juan
    ;
    Luis R. Pizzio
    ;
    Pecchi, Gina
    ;
    Campos, Cristian
    ;
    ;
    Briones, Rodrigo
    ;
    Romero-Troncoso, Eduardo
    ;
    Méndez-Rivas, Camila
    ;
    Melín, Victoria
    ;
    Murillo-Sierra, Juan
    ;
    Contreras, David
    The catalytic oxidation of phenethoxybenzene as a lignin model compound with a β-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process’s operational conditions was carried out using response surface methodology. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite experimental design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 ◦C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatography from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed. Furthermore, the successful cleavage of the β-O-4 bond in the Kraft lignin was verified by gas chromatography–mass spectrometry analysis of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products
  • Thumbnail Image
    Publication
    Testing the Capacity of Staphylococcus Equorum for Calcium and Copper Removal through MICP process
    (minerals, 2021)
    Sepúlveda, Sebastián
    ;
    Duarte-Nass, Carla
    ;
    Rivas, Mariella
    ;
    ;
    Ramírez, Andrés
    ;
    Toledo-Alarcón, Javiera
    ;
    Gutiérrez, Leopoldo
    ;
    Jeison, David
    ;
    Torres Aravena, Álvaro
    This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.
  • Publication
    Management of invasive shrubs to mitigate wildfire through fuel pellet production in central Chile
    (Elsevier, 2024) ; ; ;
    Ariz-Larenas, Sebastián
    ;
    Cifuentes-Pérez, Gerald
    ;
    Espinoza-Monje, José
    ;
    Saiz-Rueda, Gustavo
    ;
    Muñoz-Gonzáles, Robinson
    The use of pellets as a replacement for firewood has been promoted in Chile to mitigate atmospheric pollution. However, their high demand has generated stock shortages, which has motivated the search for alternative sources of feedstock. Furthermore, invasive shrubs are a highly available biomass source for bioenergy production in central-southern Chile and may be a significant factor contributing to the spread and increasing virulence observed in wildfires across the region. This study aimed to determine the change in wildfire indicators related to the removal of invasive shrubs in selected zones in the Biobío region and to assess the physicochemical properties of the extracted biomass to develop a pellet formulation to produce a material conforming to ISO standards. The biomass management of Teline monspessulana, Ulex europaeus, and Rubus ulmifolius was evaluated using a fire simulation tool in three areas with contrasting physio-climatic conditions. Our simulation results demonstrated the effectiveness of shrub management on three critical wildfire indicators. Namely, significant decreases were observed in fireline intensity (kW/m) 58–75%, flame length (m) 0–40%, and heat per unit area (kW/m2) 86%. Furthermore, a biomass quality index (BQI) was developed based on the physicochemical parameters of the three shrubs assessed. Based on this BQI, T. monspessulana was selected as the most promising shrub biomass and was consequently used in a pilot shrub-pinewood blending to produce pellets. A blending of 20:80%m/m exhibited properties close to the ISO standard. Our results show that the management of invasive shrubs has the potential to minimize the virulence of wildfires, while the physicochemical characteristics and availability of one of the shrubs analyzed (T. monspessulana) make it a viable alternative biomass source for pellet production in the region.
  • Thumbnail Image
    Publication
    Tetrabutyl ammonium salts of keggin-type vanadium-substituted phosphomolybdates and phosphotungstates for selective aerobic catalytic oxidation of benzyl alcohol
    (MDPI, 2022)
    Díaz, Juan
    ;
    Pizzio, Luis R.
    ;
    Pecchi, Gina
    ;
    Campos, Cristian H.
    ;
    ;
    Briones, Rodrigo
    ;
    Romero, Romina
    ;
    Henríquez, Adolfo
    ;
    Gaigneaux, Eric M.
    ;
    Contreras, David
    A series of tetrabutyl ammonium (TBA) salts of V-included Keggin-type polyoxoanions with W (TBA4PW11V1O40 and TBA5PW10V2O40) and Mo (TBA4PMo11V1O40 and TBA5PMo10V2O40) as addenda atoms were prepared using a hydrothermal method. These synthesized materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance (DRS UV-Vis), thermogravimetric analysis (TGA), CHN elemental analysis (EA), inductively coupled plasma spectrometry (ICP-MS), and N2 physisorption techniques to assess their physicochemical/textural properties and correlate them with their catalytic performances. According to FT-IR and DRS UV-Vis, (PVXW(Mo)12−XO40)(3+X)− anions are the main species present in the TBA salts. Additionally, CHN-EA and ICP-MS revealed that the desired stoichiometry was obtained. Their catalytic activities in the liquid-phase aerobic oxidation of benzyl alcohol to benzaldehyde were studied at 5 bar of O2 at 170 °C. Independently of the addenda atom nature, the catalytic activity increased with the number of V in the Keggin anion structure. For both series of catalysts, TBA salts of polyoxometalates with the highest V-substitution degree (TBA5PMo10V2O40 and TBA5PW10V2O40) showed higher activity. The maximum benzyl alcohol conversions obtained were 93% and 97% using (TBA)5PMo10V2O40 and (TBA)5PW10V2O40 as catalysts, respectively. In all the cases, the selectivity toward benzaldehyde was higher than 99%.
  • Publication
    Investigating the properties of shrub biomass pellets through additive and sawdust admixing
    (Elsevier, 2024) ;
    Espinoza-Monje, José
    ;
    Lazo-Andrade, Jorge
    ;
    Muñoz-González, Robinson
    ;
    Saiz-Rueda, Gustavo
    ;
    Garcés, Hugo
    ;
    Díaz, Juan
    ;
    Adam, Roman
    ;
    Coronado, Matías
    This study investigated pellets produced using shrub biomass blended with pine sawdust to improve their physical and combustion properties by incorporating additives. First, the properties of pellets produced at different temperatures were analyzed. Pellets produced using pine sawdust blended with Teline monspessulana and Ulex europaeus biomasses (80/20 %m/m) exhibited good properties when prepared at 50–60 ◦C, whereas pellets produced using Rubus ulmifolius exhibited better characteristics at lower temperatures. The results showed that further studies on the physical properties and operational conditions of biomass from Ulex europaeus and Rubus ulmifolius are required. Furthermore, pellets blended with Teline monspessulana were evaluated using starch and lignin as binders, which exhibited all the physical properties of ISO 17225–6 when 1 wt% lignin was added owing to the stronger bonding induced by the additive. Because the fuel indices indicated a high corrosion risk, the additive CaO was used to improve the combustion performance of pellets blended with Teline monspessulana biomass and binders. The content of particulate matter smaller than 2.5 and 10 μm decreased by approximately 50%, and the crystallinity of the bottom ash, which usually contains undesirable elements, was improved by adding 1 wt% CaO, which raised the melting temperature of the ash.
  • Publication
    Preliminary assessment of hazelnut shell biomass as a raw material for pellet production
    (Fuel, 2023)
    Solis, Arnaldo
    ;
    Rocha, Sebastian
    ;
    Kônig, Mario
    ;
    Adam, Romano
    ;
    Garces-Hernandez, Hugo
    ;
    Candia, Oscar
    ;
    Muñoz, Robinson
    ;
    We evaluated the use of hazelnut shell (HS) for pellet production. The investigation of chemical properties, such as the calorific value, low ash, nitrogen, sulfur and chlorine content as well as low heavy metal contents, reveals that the proposed biomass is suitable. However, fuel agglomeration is complicated possibly by some chemical (high content of extractives and lignin) and mechanical properties (spherical shape of particles). Therefore, the blend of HS with pine sawdust is examined in an iterative study, and pellet production is feasible only for percentages of HS lower than 30% in semi-industrial pelleting. The produced pellets exhibit properties compatible to those of industrial and domestic standards; however, as expected the mechanical durability and bulk density needs to be improved. Further studies to identify the optimal operating conditions for the evaluated blend can provide strategies to satisfy the projected increase in pellet demand.
  • Publication
    Biomass characterization and solvent extraction as tools to promote phenol production from urban pruning
    (Elsevier, 2024) ;
    Valdebenito, Fabiola
    ;
    Ramírez-Álvarez, Rodrigo
    ;
    Alexandra-Muñoz, M.
    ;
    Pecchi, Gina
    ;
    Canales, Roberto
    ;
    Ormazabal, Sebastián
    ;
    Muñoz, Robinson
    ;
    Alejandro-Martín, Serguei
    ;
    Quero, Franck
    ;
    Adam, Roman
    ;
    Cifuentes, Gerald
    ;
    Espinoza-Monje, J.
    Nowadays, leaves, bark, and branches are generated from the tree-pruning process in urban places, where their management is a problem because of the necessity of disposal. These wastes are lignocellulosic biomasses with poor properties for use in biofuel production, but with interesting projections for building block products such as phenol compounds. Therefore, extensive biomass characterization of urban pruning from Liquidambar styraciflua L. was developed to evaluate its composition as a tool for phenol production through thermal processing, in which solvent extraction is a complementary tool for selectivity improvement. The results showed high lignin content in bark and leaves at 45 and 28 %, respectively, compared with that in branches (14 %). Additionally, high extractives in leaves (14 %) could be an additional source of phenols. The lignin units were analyzed by Raman dispersion, revealing p–hydroxyphenyl (H) units in the bark, guaiacyl (G) units in the bark and leaves, and syringyl (S) units only in the branches. Furthermore, the micropyrolysis coupled with gas chromatography/mass spectrometry assay realized at 600 ◦C showed high presence of phenolic compounds in the three biomass investigated, where a high phenol concentration was identified in leaves, probably due to the S unit degradation during pyrolysis. With these results, an assay for bio-oil production was performed in a low-temperature pyrolysis reactor using leaves as feedstock, reaching a low bio-oil yield with high water content favored for the high inorganic content of leaves (13 %). The produced bio-oil was used for liquid–liquid extraction evaluation, where 1-octanol and methyl isobutyl ketone were identified as interesting solvents for catechol and phenol extraction, respectively. This article presents the challenge of characterizing each part of urban trees, which could be a tool to promote the use of urban pruning by studying the thermal degradation mechanism to implement processes for high-value products, such as phenols produced from L. styraciflua L.