Research Outputs

Now showing 1 - 4 of 4
  • Publication
    Management of invasive shrubs to mitigate wildfire through fuel pellet production in central Chile
    (Elsevier, 2024) ; ; ;
    Ariz-Larenas, Sebastián
    ;
    Cifuentes-Pérez, Gerald
    ;
    Espinoza-Monje, José
    ;
    Saiz-Rueda, Gustavo
    ;
    Muñoz-Gonzáles, Robinson
    The use of pellets as a replacement for firewood has been promoted in Chile to mitigate atmospheric pollution. However, their high demand has generated stock shortages, which has motivated the search for alternative sources of feedstock. Furthermore, invasive shrubs are a highly available biomass source for bioenergy production in central-southern Chile and may be a significant factor contributing to the spread and increasing virulence observed in wildfires across the region. This study aimed to determine the change in wildfire indicators related to the removal of invasive shrubs in selected zones in the Biobío region and to assess the physicochemical properties of the extracted biomass to develop a pellet formulation to produce a material conforming to ISO standards. The biomass management of Teline monspessulana, Ulex europaeus, and Rubus ulmifolius was evaluated using a fire simulation tool in three areas with contrasting physio-climatic conditions. Our simulation results demonstrated the effectiveness of shrub management on three critical wildfire indicators. Namely, significant decreases were observed in fireline intensity (kW/m) 58–75%, flame length (m) 0–40%, and heat per unit area (kW/m2) 86%. Furthermore, a biomass quality index (BQI) was developed based on the physicochemical parameters of the three shrubs assessed. Based on this BQI, T. monspessulana was selected as the most promising shrub biomass and was consequently used in a pilot shrub-pinewood blending to produce pellets. A blending of 20:80%m/m exhibited properties close to the ISO standard. Our results show that the management of invasive shrubs has the potential to minimize the virulence of wildfires, while the physicochemical characteristics and availability of one of the shrubs analyzed (T. monspessulana) make it a viable alternative biomass source for pellet production in the region.
  • Publication
    Investigating the properties of shrub biomass pellets through additive and sawdust admixing
    (Elsevier, 2024) ;
    Espinoza-Monje, José
    ;
    Lazo-Andrade, Jorge
    ;
    Muñoz-González, Robinson
    ;
    Saiz-Rueda, Gustavo
    ;
    Garcés, Hugo
    ;
    Díaz, Juan
    ;
    Adam, Roman
    ;
    Coronado, Matías
    This study investigated pellets produced using shrub biomass blended with pine sawdust to improve their physical and combustion properties by incorporating additives. First, the properties of pellets produced at different temperatures were analyzed. Pellets produced using pine sawdust blended with Teline monspessulana and Ulex europaeus biomasses (80/20 %m/m) exhibited good properties when prepared at 50–60 ◦C, whereas pellets produced using Rubus ulmifolius exhibited better characteristics at lower temperatures. The results showed that further studies on the physical properties and operational conditions of biomass from Ulex europaeus and Rubus ulmifolius are required. Furthermore, pellets blended with Teline monspessulana were evaluated using starch and lignin as binders, which exhibited all the physical properties of ISO 17225–6 when 1 wt% lignin was added owing to the stronger bonding induced by the additive. Because the fuel indices indicated a high corrosion risk, the additive CaO was used to improve the combustion performance of pellets blended with Teline monspessulana biomass and binders. The content of particulate matter smaller than 2.5 and 10 μm decreased by approximately 50%, and the crystallinity of the bottom ash, which usually contains undesirable elements, was improved by adding 1 wt% CaO, which raised the melting temperature of the ash.
  • Publication
    Biomass characterization and solvent extraction as tools to promote phenol production from urban pruning
    (Elsevier, 2024) ;
    Valdebenito, Fabiola
    ;
    Ramírez-Álvarez, Rodrigo
    ;
    Alexandra-Muñoz, M.
    ;
    Pecchi, Gina
    ;
    Canales, Roberto
    ;
    Ormazabal, Sebastián
    ;
    Muñoz, Robinson
    ;
    Alejandro-Martín, Serguei
    ;
    Quero, Franck
    ;
    Adam, Roman
    ;
    Cifuentes, Gerald
    ;
    Espinoza-Monje, J.
    Nowadays, leaves, bark, and branches are generated from the tree-pruning process in urban places, where their management is a problem because of the necessity of disposal. These wastes are lignocellulosic biomasses with poor properties for use in biofuel production, but with interesting projections for building block products such as phenol compounds. Therefore, extensive biomass characterization of urban pruning from Liquidambar styraciflua L. was developed to evaluate its composition as a tool for phenol production through thermal processing, in which solvent extraction is a complementary tool for selectivity improvement. The results showed high lignin content in bark and leaves at 45 and 28 %, respectively, compared with that in branches (14 %). Additionally, high extractives in leaves (14 %) could be an additional source of phenols. The lignin units were analyzed by Raman dispersion, revealing p–hydroxyphenyl (H) units in the bark, guaiacyl (G) units in the bark and leaves, and syringyl (S) units only in the branches. Furthermore, the micropyrolysis coupled with gas chromatography/mass spectrometry assay realized at 600 ◦C showed high presence of phenolic compounds in the three biomass investigated, where a high phenol concentration was identified in leaves, probably due to the S unit degradation during pyrolysis. With these results, an assay for bio-oil production was performed in a low-temperature pyrolysis reactor using leaves as feedstock, reaching a low bio-oil yield with high water content favored for the high inorganic content of leaves (13 %). The produced bio-oil was used for liquid–liquid extraction evaluation, where 1-octanol and methyl isobutyl ketone were identified as interesting solvents for catechol and phenol extraction, respectively. This article presents the challenge of characterizing each part of urban trees, which could be a tool to promote the use of urban pruning by studying the thermal degradation mechanism to implement processes for high-value products, such as phenols produced from L. styraciflua L.
  • Publication
    Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media
    (Elsevier, 2024) ;
    Salfate, Gabriel
    ;
    Negrete-Vergara, Camila
    ;
    Xiao, Ling-Ping
    ;
    Sun, Run-Cang
    ;
    Sánchez, Julio
    In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.