Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Salmon farming vulnerability to climate change in southern Chile: Understanding the biophysical, socioeconomic and governance links
    (Reviews in Aquaculture, 2019)
    Soto, Doris
    ;
    ;
    Dresdner, Jorge
    ;
    Luengo, Carol
    ;
    Tapia, Fabián J.
    ;
    Garreaud, René
    Here, we describe an assessment of climate‐change vulnerability for the salmon farming sector in southern Chile using a model that combines semi‐quantitative measures of Exposure (risks), Sensitivity (economic and social dependence) and Adaptation Capacity (measures that prevent and mitigate impacts). The evaluation was carried out in eight pilot communes representative of salmon production (marine grow‐out). Exposure was estimated with a semi‐quantitative risk assessment tool based on oceanographic, meteorological and hydrological information, mortality‐by‐cause databases, and through extended consultation with experts and relevant stakeholders. Threats included relevant changes in water temperature and salinity, declines in dissolved oxygen, occurrence of HAB s, and diseases that could be associated with climate change. Based on our analysis of the data, we divided the farming regions into four sub‐regions with distinctive oceanographic properties and superimposed the sea surface warming trend and a spatial pattern of mortality by respective cause. Reduction of precipitation and the increase of air and sea surface temperature are the most relevant foreseen climate change drivers, especially for regions X and XI . The resulting vulnerability matrix indicated that communes with higher production concentrations were more exposed, which in some cases coincided with higher sensitivity and lower adaptation capacity. Our models of four management scenarios allowed us to explore the changes in vulnerability associated with a southward movement of salmon production towards the Magallanes region. By identifying new protocols to increase adaptation and reduce vulnerability in a spatially explicit fashion, we provide policy recommendations aimed at increasing climate change adaptation and the long‐term sustainability of the sector.
  • Thumbnail Image
    Publication
    Environmental issues in Chilean salmon farming: A review
    (Reviews In Aquaculture, 2019)
    Quinones, Renato A.
    ;
    Fuentes, Marcelo
    ;
    Montes, Rodrigo M.
    ;
    Soto, Doris
    ;
    The growth of Chilean salmon production has not been free of important sanitary and environmental shortcomings. To ensure sustainability, it is necessary to understand the environmental impacts of salmon production on the Patagonian ecosystems. Currently, there is limited regulation or monitoring of impacts in the freshwater phase compared to the marine fattening stage, and there is some evidence of local eutrophication impact and diversity changes downstream the farms. Eutrophication of Patagonian channels and fjords from marine farms has been recognized as crucial environmental risk, although most scientific evidence comes from local effects below and around farms. So far, there are no regulations based on carrying capacity estimates to limit maximum fish biomass per area or water body. There is controversy regarding the potential role of nutrients derived from farming in triggering harmful algal blooms, yet current environmental monitoring and available information does not allow establishing or rejecting a cause–effect relationship. Pesticides used to control sea lice infestation have been shown to be deleterious to some non‐target species. There is evidence that the use of high quantities of antibiotics has allowed the development of antibiotic‐resistant bacteria in sediments and there is concern that salmon aquaculture has the potential to increase the proportion of antimicrobial‐resistant bacteria to antibiotics that are used in human medicine. There is an urgent need for more comprehensive ecosystem (beyond farm) studies on the impacts of antibiotics. Escapes of salmon (exotic species) from farms are a relevant environmental risk, although the most farmed species, Salmo salar , has shown little success in establishing wild populations. The review identifies critical knowledge gaps whose fulfilment is essential to advance towards an ecosystem approach to aquaculture and to protect Patagonian ecosystems.
  • Publication
    The glass half-empty: Climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia
    (Climatic change, 2019)
    Aguayo, Rodrigo
    ;
    ;
    Vargas-Baecheler, José
    ;
    Montecinos, Aldo
    ;
    Garreaud, Rene
    ;
    Urbina, Mauricio
    ;
    Soto, Doris
    ;
    Luis Iriarte, Jose
    Oceanographic conditions in coastal Chilean northern Patagonia (41–46°S) are strongly influenced by freshwater inputs. Precipitation and streamflow records have shown a marked decrease in this area during the last decades. Given this hydro-climatic scenario, we evaluated the hydrological sensitivity driven by climate change in the Puelo River (average annual streamflow = 640 m3 s−1), one of the most important sources of freshwater in the fjords and inland seas of Chile’s Northern Patagonia. A lumped hydrological model was developed to evaluate the potential impacts of climate change under the Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 scenarios in the near future (2030–2060) using the delta change method based on 25 General Circulation Models. The model was fed by local hydro-meteorological data and remote sensors, simulating well the magnitude and seasonality of Puelo River streamflow. Considering the Refined Index of Agreement (RIA), the model achieved a high performance in the calibration (RIA = 0.79) and validation stages (RIA = 0.78). Under the RCP 8.5 scenario (multi-model mean), the projections suggest that the annual input of freshwater from the Puelo River to the Reloncaví Fjord would decrease by − 10% (1.6 km3 less freshwater); these decreases would mainly take place in summer (~ − 20%) and autumn (~ − 15%). The recurrence of extreme hydroclimatic events is also projected to increase in the future, with the probability of occurrence of droughts, such as the recent 2016 event with the lowest freshwater input in the last 70 years, doubling with respect to the historical records.