Options
Dr. León-Muñoz, Jorge
Nombre de publicación
Dr. León-Muñoz, Jorge
Nombre completo
León Muñoz, Jorge Eduardo
Facultad
Email
jleon@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationScientific warnings could help to reduce farmed salmon mortality due to harmful algal blooms(Elsevier, 2021)
; ;Soto, Doris ;Garreaud, René ;Quiñones, RenatoMorey, FranciscoThe increasing occurrence of harmful algal blooms (HABs) affecting mariculture has been related to climatic factors but also to increasing eutrophication of coastal zones, to which aquaculture may also contribute. The role of climate change on HABs may be increasingly relevant but scientific efforts to separate this from other causal factors are to date inconclusive. HABs have been a permanent threat to the aquaculture industry in southern Chile, yet government and farmers may have not paid enough attention to scientific information and advice, even when risk-based predictions and warnings have been provided. Here we describe eutrophication risk assessments for water bodies hosting salmon farms and climate change risk maps for the salmon industry in Chilean Patagonia, including the increase of HABs as a main threat. Assessments and maps were delivered in 2020 both to producers and to government. We show that such risk information and mapping could have lessened recent salmon mortality due to HABs (March-April 2021) if government and farmers had followed explicit recommendations to reduce salmon farming production in water bodies with higher risk. This measure would reduce Exposure and Sensitivity under the climate change risk framework used. We provide policy recommendations, including reviewing maximum salmon production in relevant water bodies such as fjords according to eutrophication risks, while paying attention to additional stress from climate change variability and trends. - PublicationChilean salmon farming vulnerability to external stressors: The COVID 19 as a case to test and build resilience(Elsevier, 2021)
;Soto, Doris ;Chávez, Carlos; ;Luengo, CarolSoria Galvarro, YuriThis study addresses the risk and vulnerability of Chilean salmon production to hazards resulting from the COVID-19 pandemic threat, including limited access to farms, limited processing capacity and reduced market demand. The role of different management approaches in reducing risk and vulnerability is also explored. Results suggest that concession areas having the largest accumulated and current biomass have the highest risk, which is also transferred to the municipal level. The scenarios modelled with better management practices that reduce diseases were able to reduce risks by 30–40%. The largest risk reduction is achieved when production biomass is divided in a more equitable manner among concession areas, suggesting the need for strategic improvements in spatial planning of the activity in the marine environment according to ecosystem carrying capacity and better practices. Improving adaptation capacity can reduce vulnerability between 20% and 30% for municipalities; for example, providing local employment can be a win-win management measure under the COVID-19 threat because it reduces movement of people and facilitates handling and responses to emergencies. A larger footprint in local economies and employment can also improve social perception and acceptance of the sector, thus contributing to improve adaptation changes and governance to face the threats. The framework used here to perform a risk and vulnerability assessment of salmon farming to the pandemic-associated threats can also be useful for other aquaculture systems elsewhere, provided that relevant information is available. - PublicationThe glass half-empty: Climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia(Climatic change, 2019)
;Aguayo, Rodrigo; ;Vargas-Baecheler, José ;Montecinos, Aldo ;Garreaud, Rene ;Urbina, Mauricio ;Soto, DorisLuis Iriarte, JoseOceanographic conditions in coastal Chilean northern Patagonia (41–46°S) are strongly influenced by freshwater inputs. Precipitation and streamflow records have shown a marked decrease in this area during the last decades. Given this hydro-climatic scenario, we evaluated the hydrological sensitivity driven by climate change in the Puelo River (average annual streamflow = 640 m3 s−1), one of the most important sources of freshwater in the fjords and inland seas of Chile’s Northern Patagonia. A lumped hydrological model was developed to evaluate the potential impacts of climate change under the Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 scenarios in the near future (2030–2060) using the delta change method based on 25 General Circulation Models. The model was fed by local hydro-meteorological data and remote sensors, simulating well the magnitude and seasonality of Puelo River streamflow. Considering the Refined Index of Agreement (RIA), the model achieved a high performance in the calibration (RIA = 0.79) and validation stages (RIA = 0.78). Under the RCP 8.5 scenario (multi-model mean), the projections suggest that the annual input of freshwater from the Puelo River to the Reloncaví Fjord would decrease by − 10% (1.6 km3 less freshwater); these decreases would mainly take place in summer (~ − 20%) and autumn (~ − 15%). The recurrence of extreme hydroclimatic events is also projected to increase in the future, with the probability of occurrence of droughts, such as the recent 2016 event with the lowest freshwater input in the last 70 years, doubling with respect to the historical records.