Options
Dr. León-Muñoz, Jorge
Nombre de publicación
Dr. León-Muñoz, Jorge
Nombre completo
León Muñoz, Jorge Eduardo
Facultad
Email
jleon@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationInfluence of the hydrological variability on water quality and benthic macroinvertebrates in a Chilean estuary during a megadrought(Springer Nature, 2024)
; ;Torres-Ramírez, Patricio ;Bustos-Espinoza, Luis ;Figueroa, Sergio ;Jerez, RodolfoGalán-Mejia, AlexanderThe climate crisis has accelerated the frequency and intensity of droughts in the Mediterranean areas, impacting the hydrology and the ecology of their basins. Maule River is the largest watershed in the Chilean Mediterranean Zone. The growing anthropic and environmental pressure has led to changes in the structure and function of its terrestrial ecosystem. However, little is known about its influence on aquatic ecosystems. The effect of the recent extreme drought on the streamflow and its influence on water quality and the benthic macroinvertebrate community structure were evaluated in the Maule River’s lower section. Beyond temporal and spatial fluctuations, healthy and permanently well-oxygenated waters prevailed in the study area. However, during the megadrought period, evidenced by a significant decrease in both precipitation and river streamflow, a greater salt wedge influence was observed, at least, in the last 7 km of the river. Although with certain asynchrony, a change in the structure of the benthic macroinvertebrate community was observed in the upstream stations. This marinization reveals an increase in the domain of marine taxa associated with the Polychaeta group and a clear decrease in typical freshwater Oligochaeta individuals. This modification in the structure of the benthic community is expected to affect the function of this estuarine system. The results presented here highlight the importance of considering the variability associated with biological components for the management of water resources and related ecosystem services, considering that one of the main problems associated with changes in land use and the pressures caused by the climate crisis is the decrease in the quality and availability of water in this and other Mediterranean basins globally. - PublicationClimate and land cover trends affecting freshwater inputs to a fjord in Northwestern Patagonia(Frontiers, 2021)
; ;Aguayo, Rodrigo ;Marcé, Rafael ;Catalán, Núria ;Woelf, Stefan ;Nimptsch, Jorge ;Arismendi, Ivan ;Contreras, Camila ;Soto, DorisMiranda, AlejandroFreshwater inputs strongly influence oceanographic conditions in coastal systems of northwestern Patagonia (41–45°S). Nevertheless, the influence of freshwater on these systems has weakened in recent decades due to a marked decrease in precipitation. Here we evaluate potential influences of climate and land cover trends on the Puelo River (640 m3s–1), the main source of freshwater input of the Reloncaví Fjord (41.5°S). Water quality was analyzed along the Puelo River basin (six sampling points) and at the discharge site in the Reloncaví Fjord (1, 8, and 25 m depth), through six field campaigns carried out under contrasting streamflow scenarios. We also used several indicators of hydrological alteration, and cross-wavelet transform and coherence analyses to evaluate the association between the Puelo River streamflow and precipitation (1950–2019). Lastly, using the WEAP hydrological model, land cover maps (2001–2016) and burned area reconstructions (1985–2019), we simulated future land cover impacts (2030) on the hydrological processes of the Puelo River. Total Nitrogen and total phosphorus, dissolved carbon, and dissolved iron concentrations measured in the river were 3–15 times lower than those in the fjord. Multivariate analyses showed that streamflow drives the carbon composition in the river. High streamflow conditions contribute with humic and colored materials, while low streamflow conditions corresponded to higher arrival of protein-like materials from the basin. The Puelo River streamflow showed significant trends in magnitude (lower streamflow in summer and autumn), duration (minimum annual streamflow), timing (more floods in spring), and frequency (fewer prolonged floods). The land cover change (LCC) analysis indicated that more than 90% of the basin area maintained its land cover, and that the main changes were attributed to recent large wildfires. Considering these land cover trends, the hydrological simulations project a slight increase in the Puelo River streamflow mainly due to a decrease in evapotranspiration. According to previous simulations, these projections present a direction opposite to the trends forced by climate change. The combined effect of reduction in freshwater input to fiords and potential decline in water quality highlights the need for more robust data and robust analysis of the influence of climate and LCC on this river-fjord complex of northwestern Patagonia.