Options
Dr. León-Muñoz, Jorge
Nombre de publicación
Dr. León-Muñoz, Jorge
Nombre completo
León Muñoz, Jorge Eduardo
Facultad
Email
jleon@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationLandscape dependency of land-based salmon farming under climate change(Climate Risk Managemen, 2023)
; ;Aguayo, Rodrigo ;Soto, Doris ;Avendaño-Herrera, Ruben ;Nimptsch, Jorge ;Wolfl, Stefan ;Simon, Jeanne ;Echeverría, Cristian ;Aguayo, Mauricio ;Salazar, Cesar ;Garay, OscarFox, SageThe success of Chilean salmon farming’s early cultivation stages is largely facilitated by access to high-quality water, which is provisioned by watersheds dominated by native forests and defined by high precipitation levels. In recent decades, human activities have increasingly affected both attributes. This study analyzed the risk of climate change in 123 watersheds that supply water to land-based salmon farms in south-central Chile (36.5 43◦S). The risk was calculated based on exposure (fingerling and smolt production), sensitivity (land cover maps for three time periods), and hazard indicators (four climate change indicators). The results show a disturbing reality: under a high emissions scenario (RCP 8.5), more than 50% of the current fingerling and smolts production would be located in high or very high-risk areas. These projections are the result of both a drier and warmer climate as well as the continued processes of deforestation and fragmentation of native forests, a spatio-temporal combination which could limit the availability and quality of the water needed for optimal aquaculture production. The risk analysis suggests that landscape configuration may be a potential alternative to mitigate the consequences of climate change on Chilean salmon farming. This is particularly important in areas such as south-central Chile, where the current watershed management and/or conservation strategies do not ensure landscapes resilient to projected hydroclimatic changes. - PublicationEnvironmental issues in Chilean salmon farming: A review(Reviews In Aquaculture, 2019)
;Quinones, Renato A. ;Fuentes, Marcelo ;Montes, Rodrigo M. ;Soto, DorisThe growth of Chilean salmon production has not been free of important sanitary and environmental shortcomings. To ensure sustainability, it is necessary to understand the environmental impacts of salmon production on the Patagonian ecosystems. Currently, there is limited regulation or monitoring of impacts in the freshwater phase compared to the marine fattening stage, and there is some evidence of local eutrophication impact and diversity changes downstream the farms. Eutrophication of Patagonian channels and fjords from marine farms has been recognized as crucial environmental risk, although most scientific evidence comes from local effects below and around farms. So far, there are no regulations based on carrying capacity estimates to limit maximum fish biomass per area or water body. There is controversy regarding the potential role of nutrients derived from farming in triggering harmful algal blooms, yet current environmental monitoring and available information does not allow establishing or rejecting a cause–effect relationship. Pesticides used to control sea lice infestation have been shown to be deleterious to some non‐target species. There is evidence that the use of high quantities of antibiotics has allowed the development of antibiotic‐resistant bacteria in sediments and there is concern that salmon aquaculture has the potential to increase the proportion of antimicrobial‐resistant bacteria to antibiotics that are used in human medicine. There is an urgent need for more comprehensive ecosystem (beyond farm) studies on the impacts of antibiotics. Escapes of salmon (exotic species) from farms are a relevant environmental risk, although the most farmed species, Salmo salar , has shown little success in establishing wild populations. The review identifies critical knowledge gaps whose fulfilment is essential to advance towards an ecosystem approach to aquaculture and to protect Patagonian ecosystems. - PublicationChilean salmon farming vulnerability to external stressors: The COVID 19 as a case to test and build resilience(Elsevier, 2021)
;Soto, Doris ;Chávez, Carlos; ;Luengo, CarolSoria Galvarro, YuriThis study addresses the risk and vulnerability of Chilean salmon production to hazards resulting from the COVID-19 pandemic threat, including limited access to farms, limited processing capacity and reduced market demand. The role of different management approaches in reducing risk and vulnerability is also explored. Results suggest that concession areas having the largest accumulated and current biomass have the highest risk, which is also transferred to the municipal level. The scenarios modelled with better management practices that reduce diseases were able to reduce risks by 30–40%. The largest risk reduction is achieved when production biomass is divided in a more equitable manner among concession areas, suggesting the need for strategic improvements in spatial planning of the activity in the marine environment according to ecosystem carrying capacity and better practices. Improving adaptation capacity can reduce vulnerability between 20% and 30% for municipalities; for example, providing local employment can be a win-win management measure under the COVID-19 threat because it reduces movement of people and facilitates handling and responses to emergencies. A larger footprint in local economies and employment can also improve social perception and acceptance of the sector, thus contributing to improve adaptation changes and governance to face the threats. The framework used here to perform a risk and vulnerability assessment of salmon farming to the pandemic-associated threats can also be useful for other aquaculture systems elsewhere, provided that relevant information is available.