Options
Dr. Urzúa-Osorio, Ángel
Nombre de publicación
Dr. Urzúa-Osorio, Ángel
Nombre completo
Urzúa Osorio, Ángel Gabriel
Facultad
Email
aurzua@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationEvolutionary transitions of decapod crustaceans to non-marine, polar, and deep-sea environments: Developmental, physiological and biochemical adaptationsIn this brief, non-exhaustive essay, we review major adaptive changes in reproductive and developmental traits of decapod crustaceans, which have passed through evolutionary transitions from ancestral life in coastal marine environments to brackish, limnic, polar, or deep-sea habitats. Two major approaches can be recognised in studies of life-history evolution, focussing on: (1) developmental changes in adaptive physiological or biochemical traits of successive ontogenetic stages, comparing, for instance, osmoregulatory capabilities in larvae, juveniles, and adults (“ontogeny of adaptations” perspective); (2) adaptive changes in the modes of reproduction and development, e.g., enhanced maternal energy investment in egg production, abbreviated, non-feeding larval development (“adaptations in ontogeny”). Using both scientific approaches, Christoph D. Schubart has significantly contributed to our understanding of evolutionary transitions in crustaceans. In our essay, we pay particular attention to the significance of nutritional selection factors in relation to presumably adaptive developmental, physiological, and biochemical traits in different life-history stages. In this context, we highlight the key roles of lipids and carotenoid pigments, in particular of essential polyunsaturated fatty acids (PUFAs) and astaxanthin. While PUFAs and other lipid compounds have received wide scientific attention, we propose that future studies should further analyse also the potential role of astaxanthin and other essential carotenoids.
- PublicationGrowth, elemental and proximate biochemical composition of larval Amazon River prawn, Macrobrachium amazonicum, reared under different salinity conditions(Pontificia Universidad Católica de Valparaíso, 2017)
; ;Hayd, LiliamAnger, KlausIn the aquaculture of prawns in inland facilities, the supply with natural seawater is technically difficult and expensive, while the use of artificial salt may be suboptimal due to unfavorable ionic composition. In the present study, Amazon River prawn, Macrobrachium amazonicum, were reared from hatching through nine larval stages to the first juvenile instar, comparing four experimental conditions with two salinities (5, 10) and two different types of salt (artificial, natural). Larval biomass growth was measured in terms of changes in dry weight (W), contents of carbon and nitrogen (C, N), and proximate biochemical composition (lipid, protein); moreover, body size (carapace length, CL) was measured in first-stage juveniles. After passing through the nonfeeding first larval stage, later stages showed an exponential increase in values of biomass per individual. Rates of increase differed significantly among treatments, showing generally lower growth in experiments with artificial vs. natural salt, and at 5 vs. 10. The same response pattern was found also in CL of early juvenile shrimps. Similar but mostly weaker effects were observed in the percentage C, N, lipid, and protein values (in % of W), and in the C: N mass ratio. Our data indicate that larval rearing of M. amazonicum is feasible with artificial salts and at lower than commonly used standard salinity (10). This makes the cultivation of this species feasible also in aquaculture facilities located at large distance from the coast, where a reduction of costs and logistic investments may compensate for reduced larval growth and production of smaller juveniles. However, these salinity effects on offspring production have to be taken into account in comparisons of growth data from different laboratories and locations.