Options
Dr. Urzua-Osorio, Angel
Research Outputs
Contrasting nursery habitats promote variations in the bioenergetic condition of juvenile female red squat lobsters (Pleuroncodes monodon) of the Southern Pacific Ocean
2022, Guzmán Rivas, Fabián, Quispe, Marco, Urzua-Osorio, Angel
The red squat lobster Pleuroncodes monodon is an important fishery resource in the Humboldt Current System (HCS). This decapod is exploited in two fishing units: (a) the northern fishing unit (NFU, from 26°S to 30°S) and (b) the southern fishing unit (SFU, from 32°S to 37°S), each of which have an adjacent nursery area that is the source of recruits to replace the exploited adult populations (in the NFU: off the coast of Coquimbo (28°S) and in the SFU: off the coast of Concepción (36°S)). Marked spatial differences in the environmental conditions of the NFU and SFU, and the biogeographic break that exists between these nursery areas (30°S) may promote changes in the bioenergetic condition of new P. monodon juveniles. To evaluate this, we analyzed the bioenergetic condition (measured as: body mass, lipids, proteins, glucose, and energy) of new juvenile females in the main nursery areas off the Chilean coast. The juvenile females from the SFU showed a higher body mass than those from the NFU. Consistently, the juvenile females from the SFU had a higher content of lipids, proteins, and glucose than those from the NFU, indicative of higher energy contents and a higher lipid/protein ratio in the south compared to the north. Considering the current overexploitation of this fishery resource in the HCS, it is essential to understand how the bioenergetic condition of juvenile females of P. monodon may vary in nursery areas at different latitudes in order to generate sustainable fishery management policies with an ecological approach, designed specifically to each fishing unit. Furthermore, identifying the latitudinal variations of these biochemical compounds in P. monodon juveniles can elucidate the geographic origin of red squat lobsters that present a ”better bioenergetic condition” in the HCS, which may significantly benefit sustainable fishing certification processes.
Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring
2018, Urzua-Osorio, Angel, Bascur Bascur, Miguel Ángel, Guzmán Rivas, Fabián, Urbina, Mauricio
Hemigrapsus crenulatus is a key species of coastal and estuarine ecosystems in the Southeastern Pacific and New Zealand. Since the gravid females-and their embryos-develop under conditions of variable salinity, we propose that low external salinity will be met with an increase in energy expenditures in order to maintain osmoregulation; subsequently, the use of energy reserves for reproduction will be affected. In this study, we investigate in H. crenulatus whether 1) the biomass and energy content of embryos is influenced by salinity experienced during oogenesis and embryogenesis and 2) how variation in the biomass and energy content of embryos affects larval energetic condition at hatching. Here at low salinity (5 PSU), egg-bearing females experienced massive and frequent egg losses, and therefore the development of their eggs during embryogenesis was not completed. In turn, at intermediate and high salinity (15 and 30 PSU) embryogenesis was completed, egg development was successful, and larvae were obtained. Consistently, larvae hatched from eggs produced and incubated at high salinity (30 PSU) were larger, had higher dry weight, and had increased carbon content and energy than larvae hatched from eggs produced at intermediate salinity (15 PSU). From these results, it is seen that the size and biomass of early life stages of H. crenulatus can be affected by environmental salinity experienced during oogenesis and embryogenesis, and this variation can then directly affect the energetic condition of offspring at birth. Therefore, this study reveals a “cascade effect” modulated by salinity during the early ontogeny.