Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Temporal and inter-individual changes in the integrated biochemical condition of the gonads of female swordfish (Xiphias gladius) from the Southeastern Pacific Ocean
    (Aquatic Biology, 2023)
    Guzmán-Rivas, Fabián
    ;
    Ortega, Juan
    ;
    Mora, Sergio
    ;
    Barría, Patricio
    ;
    Riera, Rodrigo
    ;
    The integrated biochemical condition (IBC) of gonads is closely related to the reproductive success of highly migratory marine species. The IBC of gonads can be influenced not only by size and/or age, but also by environmental conditions. Here, female swordfish, Xiphias gladius, that migrate to temperate regions with a marked seasonality (e.g., the Southeastern Pacific Ocean, SEPO) were compared in relation to the IBCs (lipids, proteins, glucose and, fatty acid profiles) of their gonads; individuals with two body size ranges and distinct degrees of sexual maturity were evaluated, and considered as: small and/or virginal (SV: <170 cm lower jaw fork-length (LJFL), oocyte size (OS) <0.08 mm) vs large and/or maturing females (LM: >190 cm LJFL, OS >0.133 mm). This comparison was conducted in two environmentally contrasting seasons (winter vs spring). Our results showed that the gonadosomatic index (GSI) was significantly higher in LM than SV. Lipid contents varied significantly between seasons and body sizes. The highest lipid concentrations were recorded in the spring in large females. No significant differences were found when comparing the protein and glucose contents of the two evaluated seasons or body size ranges of the studied females. In turn, the fatty acid (FA) profiles of female gonads significantly varied for both seasons and body size ranges. A high content of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and poly-unsaturated fatty acids (PUFAs) were recorded in female gonads in the spring. The SFAs C16:0 and C18:0, the MUFA C18:1n9, and the essential PUFA C22:6n3 were the main contributors to the observed differences between spring and winter. These results could be used as indicators of the nutritional condition and health status of swordfish individuals. Hence, the IBC of female swordfish gonads have great potential to aid in estimating survival rates and stock abundances of this species. The integration of this information constitutes an asset in fishery management models with an ecosystem approach.
  • Publication
    Temporal variation in larval biochemical condition at hatching of the red squat lobster Pleuroncodes monodon (Decapoda: Munididae) from Humboldt Current System
    (Invertebrate Reproduction & Development, 2019)
    Seguel, Victoria
    ;
    Guzmán, Fabián
    ;
    Bascur, Miguel
    ;
    Riera, Rodrigo
    ;
    Environmental variables are pivotal factors for the condition of marine invertebrate species with a complex life cycle, influencing larval biochemical composition, and therefore, indirectly affecting later benthic stages. We herein explore the physiological responses of the fishery resource the red squat lobster (Pleuroncodes monodon) under contrasting environmental conditions of seawater surface temperature and planktonic food availability in the Humboldt Current System (HCS), through the analysis of larval condition and its consequences in the HCS. Larval condition was measured as dry weight, biochemical composition and fatty acids profile at hatching during ‘late summer’ (i.e. March) and ‘early winter’ (i.e. June). Larvae hatching from larger eggs produced in winter months showed a higher size, dry weight and a higher content of bioenergetic fuel (i.e. lipids and essential fatty acids) compared to those from larvae hatching in summer months. Temperature and food availability can to be key driving factors favouring an evolution of temporal variability in larval condition of the red squat lobster. These physiological adaptations provide an extension of the reproductive period of P. monodon, specifically planktonic larval development during ‘early winter’, characterized by a period with restricted food availability and lower temperatures than ‘late summer’.
  • Publication
    Interspecific variation in the physiological and reproductive parameters of porcelain crabs from the Southeastern Pacific coast: Potential adaptation in contrasting marine environments
    (Elsevier, 2018)
    Viña, Natalia
    ;
    Bascur Bascur, Miguel Ángel
    ;
    Guzmán, Fabián
    ;
    Riera, Rodrigo
    ;
    Paschke, Kurt
    ;
    Porcelain crabs inhabit from upper intertidal to subtidal habitats. These environments are characterized by highly variable environmental conditions, which subject species found in these habitats to stress. In this study, we compared reproductive traits of mothers [i.e. fecundity, reproductive output (RO), dry weight, organic matter] and physiological parameters of their offspring (i.e. wet weight, water content, dry weight, organic matter, lactate content of embryos) of three species of porcelain crabs that inhabit the Southeastern Pacific: Petrolisthes laevigatus (upper intertidal); P. violaceus (low intertidal); Allopetrolisthes punctatus (subtidal). Overall, female P. laevigatus had lower fecundity (802 ± 115 vs. 4181 ± 1097 embryos) and amount of organic matter in their embryo masses (0.053 ± 0.006 vs. 0.27 ± 0.025 g) but higher RO values (1.34 ± 0.34 vs. 0.20 ± 0.07) than Allopetrolisthes punctatus. In addition, P. laevigatus embryos had higher organic matter content (81.09 ± 28.8 vs. 64.54 ± 6.1 μg), higher water content (188.6 ± 91.9 vs. 152.4 ± 30.8 μL) and higher lactate content (0.26 ± 0.04% vs. 0.07 ± 0.01% dry weight) than that found in A. punctatus embryos. Furthermore, females and embryos of P. violaceus showed low values and similar to those observed in P. laevigatus. As a potential strategy to increase survival of the offspring, P. laevigatus seems to invest a large portion of its energy in production of high quality embryos, despite costs to fecundity. This study reveals that porcelain crabs have physiological adaptations during their ontogeny that allow them to survive in fluctuating environments.