Research Outputs

Now showing 1 - 10 of 31
No Thumbnail Available
Publication

Variability in the energy reserves of swordfish (Xiphias gladius) of the southeastern Pacific Ocean: A temporal and intra-individual perspective

2023, Lazo-Andrade, Jorge, Guzmán-Rivas, Fabián, Barría, Patricio, Urzua-Osorio, Angel

The temporal dynamics of energy reserves are associated with the physiological processes (i.e., reproduction) in marine fishes, in which storage organs play a key role for efficient energy investment. We evaluated the temporal (i.e., seasons) and intra-individual (i.e., organs) dynamics of adult female swordfish (Xiphias gladius) during its feeding period off the Chilean coast in the southeastern Pacific Ocean (SEPO). The biochemical composition (i.e., lipids, proteins, and glucose), energy content and fatty acid profile of the muscle, liver and gonad were evaluated during the austral autumn, winter, and spring. Our results showed principally an intra-individual effect in both the muscle and liver in the autumn and spring. Herein, a trend of higher amounts of lipids and total energy were found in the muscle, while the liver showed greater protein and glucose contents. Consequently, the muscle showed a higher saturated, monounsaturated, and polyunsaturated fatty acid contents than the liver. Although the gonad showed no significant temporal effect in the lipids and proteins contents, an increasing trend of each biochemical constituent, fatty acid group and gonadosomatic index were found from autumn to winter. Consistently, the glucose and total energy content as well Fulton's condition factor were significantly higher in winter. These findings reflect the spatial-temporal physiological dynamic of swordfish based on the storage of energy reserves in different organs during its feeding period. In this way, the products obtained from swordfish could have an added value depending on the season and capture zone, which could benefit the exploitation and regulation measures of this resource under an ecological approach of conservation and sustainability in the SEPO.

No Thumbnail Available
Publication

How does emersion time affect embryos of coastal marine invertebrate species? Biochemical responses of three porcelain crabs from the Southeastern Pacific

2021, Dr. Urzua-Osorio, Angel, Viña‐Trillos, Natalia, Guzmán‐Rivas, Fabián

Porcelain crabs that inhabit contrasting environments along the Southeastern Pacific coast have developed physiological adaptive responses to the harsh environmental conditions. However, it is not yet known if these responses are already present in early life stages, in embryos, for example, which are more vulnerable to environmental fluctuations than adults. In this study, we subjected ovigerous female crabs of three crab species (Allopetrolisthes punctatus,Petrolisthes laevigatus, andPetrolisthes violaceus) to different periods of emersion (0, 1, 3, and 5 hr) to measure the weight and biochemical parameters (i.e., glucose and lactate) in their embryos after a period of stress induction through emersion. The results indicate that after five hours of emersion,P. laevigatus' embryos had the highest dry weight. This same trend was observed in the embryos ofP. violaceus.Allopetrolisthes punctatus' embryos had the lowest weight. The embryos' glucose content inP. laevigatusandP. violaceuswas consumed during the emersion time, while in embryos ofA. punctatusit remained relatively constant. The highest glucose content was reported inP. laevigatus, followed byP. violaceusandA. punctatus. The lactate content showed an opposite trend and was gradually accumulated with increasing emersion time.Petrolisthes laevigatushad the highest lactate content. This study reveals that the early ontogeny of these porcelain crabs is well adapted to long periods of emersion, showing biochemical adaptive responses linked to aerobic metabolism. These adaptations could reflect a distinctive physiological trait, explaining why porcelain crabs are able to survive in contrasting conditions.

No Thumbnail Available
Publication

Bioenergetic traits of three keystone marine species in the food web of a pristine Patagonian fjord

2021, Ruiz Ruiz, Paula A., Contreras-Quintana, Sergio, Quiroga, Eduardo, Urzua-Osorio, Angel

The Patagonian fjords are high-latitude aquatic ecosystems, highly sensitive to climate change and play a key role in the exchange of organic matter and carbon flows between terrestrial and marine environments. The bioenergetic composition of species living in these ecosystems are fundamental to understanding the distribution, seasonal variations, and exchange of organic matter within benthic communities. This study reports on the bioenergetic characteristics (lipids, protein, glucose, and energy content) of three keystone species with different life-style and feeding habits: a benthic sea star (Ctenodiscus australis); squat lobster (Munida gregaria); and a Patagonian notothenioid (Eleginops maclovinus). Samples were obtained from the Yendegaia Fjord (54°40'S - 68°50′W) in Chilean Patagonia. Our results indicate that M. gregaria has higher concentrations of lipids, proteins, glucose, and total energy compared to either E. maclovinus or C. australis. The predominance of lipids in all species is possibly related to physiological characteristics and feeding strategies. Also, may be associated with the availability of food and environmental conditions typical of a fjord ecosystem and the reproductive stage in that they were collected. These results suggest that marine animals inhabiting glacially influenced environments with low temperature and low productivity, requires a convergent physiological strategy characterized by high levels of energy storage (i.e. lipids) for metabolism and key bioenergetic processes such as growth and reproduction.

No Thumbnail Available
Publication

Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae)

2020, Doherty‐Weason, Daniel, Oyarzun, Fernanda, Vera, Luciano, Bascur, Miguel, Guzmán, Fabián, Silva, Francisco, Urzua-Osorio, Angel, Brante-Ramirez, Antonio

The level of parental investment for larval nutrition may determine the life cycle in marine invertebrate species laying egg masses or capsules, where the food available for enclosed individuals would determine time and developmental stage of hatching. Most species show a unique type of larval development. However, few species are poecilogonous and combine more than one development type. Poecilogony, although scarcely studied, allows comparing different patterns of parental reproductive investment, without the phylogenetic effect of the species ancestral modes of development (phylogenetic inertia), to help to understand the factors determining life strategy evolution in marine invertebrates. The poecilogonous polychaete worm Boccardia wellingtonensis encapsulates and incubates its offspring, which then hatches as either planktotrophic larvae or benthic juveniles; while Boccardia chilensis shows a non‐poecilogonous reproductive type, producing only planktotrophic larvae. In this work, we estimated the bioenergetic and biochemical composition of brooding and non‐brooding females of B. wellingtonensis and B. chilensis to compare the costs of reproduction in these two species. Results showed that glucose, protein, lipid, and energy content were significantly higher in non‐brooding than in brooding females of B. wellingtonensis; but also contained significantly more glucose, protein, and lipid than females of B. chilensis (in absolute and relative dry weight values). The poecilogonous species showed higher energy content previous to laying offspring. Our results support the idea that the evolution of a certain reproductive and life history traits in marine invertebrates is related to adaptations in the female's reproductive investment.

No Thumbnail Available
Publication

Revealing coastal upwelling impact on the muscle growth of an intertidal fish

2023, Zuloaga, Rodrigo, Varas, Oscar, Ahrend, Camila, Pulgar, Victor M., Valdés, Juan A., Molina, Alfredo, Duarte, Cristian, Urzua-Osorio, Angel, Guzmán-Rivas, Fabián, Aldana, Marcela, Pulgar, José

Upwelling oceanographic phenomenon is associated with increased food availability, low seawater temperature and pH. These conditions could significantly affect food quality and, in consequence, the growth of marine species. One of the most important organismal traits is somatic growth, which is highly related to skeletal muscle. In fish, skeletal muscle growth is highly influenced by environmental factors (i.e. temperature and nutrient availability) that showed differences between upwelling and downwelling zones. Nevertheless, there are no available field studies regarding the impact of those conditions on fish muscle physiology. This work aimed to evaluate the muscle fibers size, protein content, gene expression of growth and atrophy-related genes in fish sampled from upwelling and downwelling zones. Seawater and fish food items (seaweeds) samples were collected from upwelling and downwelling zones to determine the habitat's physical-chemical variations and the abundance of biomolecules in seaweed tissue. In addition, white skeletal muscle samples were collected from an intertidal fish to analyze muscular histology, the growth pathways of protein kinase B and the extracellular signal-regulated kinase; and the gene expression of growth- (insulin-like growth factor 1 and myosin heavy-chain) and atrophy-related genes (F-box only protein 32 and muscle RING-finger protein-1). Upwelling zones revealed higher nutrients in seawater and higher protein content in seaweed than samples from downwelling zones. Moreover, fish from upwelling zones presented a greater size of muscle fibers and protein content compared to downwelling fish, associated with lower protein ubiquitination and gene expression of F-box only protein 32. Our data indicate an attenuated use of proteins as energy source in upwelling conditions favoring protein synthesis and muscle growth. This report shed lights of how oceanographic conditions may modulate food quality and fish muscle physiology in an integrated way, with high implications for marine conservation and sustainable fisheries management.

No Thumbnail Available
Publication

Consumption of marine-derived nutrients from invasive Chinook salmon (Oncorhynchus tshawytscha) transfer ω-3 highly unsaturated fatty acids to invasive resident rainbow trout (O. mykiss)

2022, Dr. Urzua-Osorio, Angel, Figueroa-Muñoz, Guillermo, Arismendi, Ivan, Guzmán-Rivas, Fabián, Fierro, Pablo, Gomez-Uchida, Daniel

Marine-derived nutrients (MDN) contained in gametes (mature eggs and sperm), carcasses and metabolic wastes from anadromous migratory salmon can transfer energy and materials to fresh water, thereby affecting the structure and function of stream ecosystems. This is crucial among ecosystems where humans have mediated biological invasions by propagating non-native species. Previous studies have demonstrated that consumption of MDN from salmon can benefit both native and invasive resident fishes. Yet, a more detailed understanding of the transfer of biomolecules with important physiological functions such as ω-3 highly unsaturated fatty acids (HUFAs) have received less attention among researchers. Here we demonstrate that consumption of MDN contained in invasive Chinook salmon eggs transfers ω-3 HUFAs (e.g., EPA and DHA) to resident invasive rainbow trout in a river food web. We conducted a field study in river sections previously identified as spawning areas for Chinook salmon in the Cisnes River, Patagonia. Rainbow trout were sampled around salmon spawning areas before, during, and after the salmon spawning season. Additionally, we collected tissue from different food web resources and components of different origin (e.g., primary producers, aquatic and terrestrial items) from the Cisnes River system. Analyses of stomach contents of trout were performed in conjunction with analyses of both lipid content and fatty acid profiles of trout tissue and food web components. Chinook salmon eggs showed higher content of ω-3 HUFAs, especially EPA (31.08 ± 23.08 mg g DW−1) and DHA (27.50 ± 14.11 mg g DW−1) than either freshwater or terrestrial components (0–6.10 mg g DW−1 both EPA and DHA). We detected marked shifts in the fatty acid profile (~six-fold increase in EPA and DHA) of trout following consumption of Chinook salmon eggs. Our findings suggest that MDN via consumption of salmon eggs by resident rainbow trout may positively influence resident trout and likely contribute to gauge synergistic interactions between invaders on receiving ecosystems of Patagonia.

No Thumbnail Available
Publication

Seasonal variation in reproductive parameters of the squat lobster Pleuroncodes monodon from a South Pacific population

2016, Dr. Urzua-Osorio, Angel, Olavarría, Luis, Guzmán-Rivas, Fabián

Pleuroncodes monodon from the Chilean coast has seasonal reproduction. During the seasonal period, females and their eggs are exposed to seasonal variation in environmental conditions. In P. monodon populations inhabiting the Southern Pacific coast near Concepción, Chile, we quantified late summer (February–March 2014) and late winter (August–September 2014) seasonal variations in female reproductive parameters (carapace length, fecundity, reproductive output (RO), ash weight, organic content) as well as eggs parameters (length, volume, dry weight, organic content). There was conspicuous seasonal variation in the main reproductive parameters of this species. During the summer, the number of eggs and organic content of females were higher than winter, whereas RO was slightly higher in winter than in summer. Significant variation in the size and biomass of the eggs was also found between seasons. For example, eggs laid in summer were smaller, had a lower measured dry mass, and had a lower organic content than eggs laid in winter. Seasonal variations in the fecundity and size of the eggs have implications for fishery models, which can be used to estimate the relative contribution of different cohorts to recruitment and stability of adult benthic populations.

No Thumbnail Available
Publication

Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring

2018, Urzua-Osorio, Angel, Bascur Bascur, Miguel Ángel, Guzmán Rivas, Fabián, Urbina, Mauricio

Hemigrapsus crenulatus is a key species of coastal and estuarine ecosystems in the Southeastern Pacific and New Zealand. Since the gravid females-and their embryos-develop under conditions of variable salinity, we propose that low external salinity will be met with an increase in energy expenditures in order to maintain osmoregulation; subsequently, the use of energy reserves for reproduction will be affected. In this study, we investigate in H. crenulatus whether 1) the biomass and energy content of embryos is influenced by salinity experienced during oogenesis and embryogenesis and 2) how variation in the biomass and energy content of embryos affects larval energetic condition at hatching. Here at low salinity (5 PSU), egg-bearing females experienced massive and frequent egg losses, and therefore the development of their eggs during embryogenesis was not completed. In turn, at intermediate and high salinity (15 and 30 PSU) embryogenesis was completed, egg development was successful, and larvae were obtained. Consistently, larvae hatched from eggs produced and incubated at high salinity (30 PSU) were larger, had higher dry weight, and had increased carbon content and energy than larvae hatched from eggs produced at intermediate salinity (15 PSU). From these results, it is seen that the size and biomass of early life stages of H. crenulatus can be affected by environmental salinity experienced during oogenesis and embryogenesis, and this variation can then directly affect the energetic condition of offspring at birth. Therefore, this study reveals a “cascade effect” modulated by salinity during the early ontogeny.

No Thumbnail Available
Publication

The paralytic shellfish toxin effect on bioenergetic constituents of the fishery resource Chorus giganteus (Gastropoda: Muricidae)

2022, Dr. Urzua-Osorio, Angel, Andrade-Villagrán, Paola, Agüero, M., Navarro, J.

Alexandrium catenella, one of the most common harmful microalgae observed in southern Chile, produces paralytic shellfish toxins, which can affect many organisms throughout the trophic chain. This research evaluated how paralytic shellfish toxins affected the principal bioenergetic constituents and fatty acids composition of the carnivorous snail Chorus giganteus. Snails were separated into a “toxic” group that was fed the toxic clam Mulinia edulis (which was previously fed A. catenella), and a “non-toxic” group, fed non-toxic clams. Both groups were kept under these conditions for 63 days. Our results indicated no difference in the ingestion rate of toxic versus non-toxic snails; however, a higher protein level was identified in toxic snails. The total lipid content proved to be no different in toxic versus non-toxic snails; although, an effect of the toxic diet on the fatty acid profile of C. giganteus was observed. High levels of essential polyunsaturated fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in toxic snails, were identified. Our results suggest that exposure to paralytic shellfish toxins, through diet, may cause changes in the biochemical composition of C. giganteus, which may have a subsequent impact on its energetic physiology.

No Thumbnail Available
Publication

Biochemical-ecological composition and bio-stoichiometric ratios of swordfish (Xiphias gladius) gonads in the Southeastern Pacific Ocean

2023, Guzmán-Rivas, Fabián, Lazo-Andrade, Jorge, Quispe-Machaca, Marco, Ortega, Juan Carlos, Mora, Sergio, Barría, Patricio, Urzua-Osorio, Angel

Swordfish (Xiphias gladius), a highly migratory fishery resource of great importance in the Southeastern Pacific Ocean (SEPO), is a species with late sexual maturation, high longevity, and a large body size that spawns and reproduces several times throughout its adulthood. In the present study, we hypothesized that the Biochemical-Ecological Composition (BEC) of the gonad (measured as the lipid, protein, glucose, and energy contents) and its bio-stoichiometric ratios (lipid/protein: L/P; lipid/ glucose: L/G) would be influenced by both female body size (lower jaw fork length in cm, LJFL: <180, 180–260, >260) and time (trimesters: 1,2,3; years: 2017, 2019). Our results revealed that in relation to their body size, female swordfish gonads varied significantly in their BEC, but not in their L/P and L/G ratios during their quarterly development within an annual cycle. These variations in the BEC were noticeable in females of medium (180–260) and larger (>260) sizes. Particularly, as the year progressed, females stored significant amounts of energy during their trophic migration, made evident by the increase in the lipid and protein contents of the gonads, which reached maximum levels towards the end of the year, during the second and third trimesters. These high energy reserves can be used for the reproduction during the last trimester of the year (i.e. austral spring–summer), when the warm temperature and high productivity in the SEPO are optimal for the successful development of oocytes. Future studies considering an ecosystem approach should analyze the classes of lipids and types of fatty acids that are involved in the reproduction of this species, and how they are acquired through the consumption of lipid-rich prey, and subsequently metabolized to be used in reproduction and during early ontogeny.