Options
Dr. Urzua-Osorio, Angel
Research Outputs
Ingestion of paralytic shellfish toxins in a carnivorous gastropod (Chorus giganteus): Effects on their elemental composition and reproductive traits
2024, Dr. Urzua-Osorio, Angel, Andrade-Villagrán, Paola, Navarro, J., Villanueva, P., Polanco, Y.
The producer of paralytic shellfish toxin (PST), Alexandrium catenella, is one of the main generators of HABs in the coasts of Chile. Its presence produces ecological and economic damage, directly affecting filter feeding organisms, and indirectly to other organism through the trophic chain. The objective of this research was to identify the effect of a toxic diet on the energetic and reproductive parameters of the carnivorous snail Chorus giganteus. Two groups of snails were used, one fed with toxic prey (bivalves fed with A. catenella), and the other fed with non-toxic prey. Both treatments were maintained under these conditions for 63 days, then, elemental composition (C, N) and energy content were estimated, and fecundity parameters were analyzed. The results indicate that snails fed with toxic prey had a lower percentage of C and C/N ratio. The energy content was significantly lower in intoxicated snails. Regarding fecundity parameters, a higher number of egg-masses were produced by toxic snails, however, only 62% of these showed embryonic development, with 57% hatching success. A negative relationship was identified between the mean PST concentration, quantified in snails, and the number of egg-masses produced per aquarium. In the aquarium where the snails had highest average PST concentration (1200 ± 820 μg STX.2HCL eq. Kg− 1) there was no oviposition, while egg-masses were only produced by snails in aquaria where the average concentration did not exceed 360 ± 160 μg STX.2HCL eq. Kg− 1. It is likely that, with low levels of accumulated PST, C. giganteus activates its oviposition process as a response to toxin-induced stress, generating a higher energy expenditure supported by a redirection of its reserves. However, when the intoxication presents higher levels, the reproductive process could be inhibited, similar to what has been identified in other molluscs.
Temporal variation in larval biochemical condition at hatching of the red squat lobster Pleuroncodes monodon (Decapoda: Munididae) from Humboldt Current System
2019, Seguel, Victoria, Guzmán, Fabián, Bascur, Miguel, Riera, Rodrigo, Urzua-Osorio, Angel
Environmental variables are pivotal factors for the condition of marine invertebrate species with a complex life cycle, influencing larval biochemical composition, and therefore, indirectly affecting later benthic stages. We herein explore the physiological responses of the fishery resource the red squat lobster (Pleuroncodes monodon) under contrasting environmental conditions of seawater surface temperature and planktonic food availability in the Humboldt Current System (HCS), through the analysis of larval condition and its consequences in the HCS. Larval condition was measured as dry weight, biochemical composition and fatty acids profile at hatching during ‘late summer’ (i.e. March) and ‘early winter’ (i.e. June). Larvae hatching from larger eggs produced in winter months showed a higher size, dry weight and a higher content of bioenergetic fuel (i.e. lipids and essential fatty acids) compared to those from larvae hatching in summer months. Temperature and food availability can to be key driving factors favouring an evolution of temporal variability in larval condition of the red squat lobster. These physiological adaptations provide an extension of the reproductive period of P. monodon, specifically planktonic larval development during ‘early winter’, characterized by a period with restricted food availability and lower temperatures than ‘late summer’.