Research Outputs

Now showing 1 - 3 of 3
No Thumbnail Available
Publication

The paralytic shellfish toxin effect on bioenergetic constituents of the fishery resource Chorus giganteus (Gastropoda: Muricidae)

2022, Dr. Urzúa-Osorio, Ángel, Andrade-Villagrán, Paola, Agüero, M., Navarro, J.

Alexandrium catenella, one of the most common harmful microalgae observed in southern Chile, produces paralytic shellfish toxins, which can affect many organisms throughout the trophic chain. This research evaluated how paralytic shellfish toxins affected the principal bioenergetic constituents and fatty acids composition of the carnivorous snail Chorus giganteus. Snails were separated into a “toxic” group that was fed the toxic clam Mulinia edulis (which was previously fed A. catenella), and a “non-toxic” group, fed non-toxic clams. Both groups were kept under these conditions for 63 days. Our results indicated no difference in the ingestion rate of toxic versus non-toxic snails; however, a higher protein level was identified in toxic snails. The total lipid content proved to be no different in toxic versus non-toxic snails; although, an effect of the toxic diet on the fatty acid profile of C. giganteus was observed. High levels of essential polyunsaturated fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in toxic snails, were identified. Our results suggest that exposure to paralytic shellfish toxins, through diet, may cause changes in the biochemical composition of C. giganteus, which may have a subsequent impact on its energetic physiology.

No Thumbnail Available
Publication

The cascade of effects caused by emersion during early ontogeny in porcelain crabs of the Southeast Pacific coast: Biochemical responses of offspring

2021, Dr. Urzúa-Osorio, Ángel, Viña-Trillos, Natalia, Guzmán-Rivas, Fabián

Petrolisthes crabs inhabit a wide range of coastal environments, from the upper intertidal to the subtidal, experiencing regular changes in pH, salinity, and temperature. Hence, such subtidal and intertidal invertebrates are likely to show physiological and biochemical adaptive responses in order to successfully develop during early ontogenetic stages and thus reach reproduction. We herein evaluated the biochemical responses to contrasting environmental conditions of the early ontogenetic stages of two coastal crabs from the Southeast Pacific coast: Petrolisthes laevigatus and Allopetrolisthes punctatus. For this purpose, stage I embryos of both species were subjected to two treatments: (1) emersion (i.e., a daily 3 h aerial exposure until the zoeas hatched) and (2) immersion (i.e., uninterrupted underwater submersion until the zoeas hatched); the total contents of glucose, proteins, lipids, and fatty acids of the organisms were measured in stage I embryos and recently hatched zoeas in order to assess the biochemical constitution of the two species. Both species showed changes in their energetic reserves when treatments within species were compared. Our results found that A. punctatus was negatively affected by stressful periods of emersion, while P. laevigatus showed the opposite tendency and was affected by periods of immersion. The sensitivity of the response and the contrasting outcomes for these two crabs underpin the fact that changes in environmental conditions along the Chilean coast due to climate change (e.g., increased anoxic coastal waters) may have significantly negative consequences on the populations of these ecologically important species and the associated taxa within their ecosystems.

No Thumbnail Available
Publication

Temporal variation in larval biochemical condition at hatching of the red squat lobster Pleuroncodes monodon (Decapoda: Munididae) from Humboldt Current System

2019, Seguel, Victoria, Guzmán, Fabián, Bascur, Miguel, Riera, Rodrigo, Dr. Urzúa-Osorio, Ángel

Environmental variables are pivotal factors for the condition of marine invertebrate species with a complex life cycle, influencing larval biochemical composition, and therefore, indirectly affecting later benthic stages. We herein explore the physiological responses of the fishery resource the red squat lobster (Pleuroncodes monodon) under contrasting environmental conditions of seawater surface temperature and planktonic food availability in the Humboldt Current System (HCS), through the analysis of larval condition and its consequences in the HCS. Larval condition was measured as dry weight, biochemical composition and fatty acids profile at hatching during ‘late summer’ (i.e. March) and ‘early winter’ (i.e. June). Larvae hatching from larger eggs produced in winter months showed a higher size, dry weight and a higher content of bioenergetic fuel (i.e. lipids and essential fatty acids) compared to those from larvae hatching in summer months. Temperature and food availability can to be key driving factors favouring an evolution of temporal variability in larval condition of the red squat lobster. These physiological adaptations provide an extension of the reproductive period of P. monodon, specifically planktonic larval development during ‘early winter’, characterized by a period with restricted food availability and lower temperatures than ‘late summer’.