Options
Dr. Cariñe-Catrileo, Jaime
Research Outputs
Self-testing mutually unbiased bases in higher dimensions with space-division multiplexing optical fiber technology
2021, Dr. Cariñe-Catrileo, Jaime, Farkas, Máté, Guerrero, Nayda, Cañas, Gustavo, Lima, Gustavo
In the device-independent quantum-information approach, the implementation of a given task can be self-tested solely from the recorded statistics and without detailed models for the employed devices. Even though experimentally demanding, it provides appealing verification schemes for advanced quantum technologies that naturally fulfil the associated requirements. In this work, we experimentally study whether self-testing protocols can be adopted to certify the proper functioning of quantum devices built with modern space-division multiplexing optical fiber technology. Specifically, we consider the prepare-and-measure protocol of Farkas and Kaniewski [Phys. Rev. A 99, 032316 (2019)] for self-testing measurements corresponding to mutually unbiased bases (MUBs) in a dimension 𝑑>2. In our scheme, the state preparation and measurement stages are implemented using a multiarm interferometer built with multicore optical fibers and related components. Due to the high overlap of the interferometer’s optical modes achieved with this technology, we are able to reach the required visibilities for self-testing the implementation of two four-dimensional MUBs. We also quantify two operational quantities of the measurements: (i) the incompatibility robustness, connected to Bell violations, and (ii) the randomness extractable from the outcomes. Since MUBs lie at the core of several quantum-information protocols, our results are of practical interest for future quantum works relying on space-division multiplexing optical fibers.
Quantum randomness protected against detection loophole attacks
2021, Dr. Cariñe-Catrileo, Jaime, Mironowicz, Piotr, Cañas, Gustavo, Gómez, Esteban, Barra, Johanna, Cabello, Adán, Xavier, Guilherme, Lima, Gustavo, Pawłowski, Marcin
Device and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks. The key idea is the introduction of a blocking device that adds failures in the communication between the preparation and measurement devices. We prove that, for any detection efficiency, there is a blocking rate that provides protection against these attacks. We experimentally demonstrate the generation of private randomness using weak coherent states and standard avalanche photo-detectors.
Certification of a non-projective qudit measurement using multiport beamsplitters
2023, Martínez, Daniel, Gómez, Esteban, Cariñe-Catrileo, Jaime, Pereira, Luciano, Delgado, Aldo, Walborn, Stephen, Tavakoli, Armin, Lima, Gustavo
The most common form of measurement in quantum mechanics projects a wavefunction onto orthogonal states that correspond to definite outcomes. However, generalized quantum measurements that do not fully project quantum states are possible and have an important role in quantum information tasks. Unfortunately, it is difficult to certify that an experiment harvests the advantages made possible by generalized measurements, especially beyond the simplest two-level qubit system. Here we show that multiport beamsplitters allow for the robust realization of high-quality generalized measurements in higher-dimensional systems with more than two levels. Using multicore optical fibre technology, we implement a seven-outcome generalized measurement in a four-dimensional Hilbert space with a fidelity of 99.7%. We present a practical quantum communication task and demonstrate a success rate that cannot be simulated in any conceivable quantum protocol based on standard projective measurements on quantum messages of the same dimension. Our approach, which is compatible with modern photonic platforms, showcases an avenue for faithful and high-quality implementation of genuinely non-projective quantum measurements beyond qubit systems.
Characterization of topography hidden under paint by means of qualitative algorithms robust to the number of frames and non-uniform illumination
2022, Dr. Cariñe-Catrileo, Jaime, Baradit, E., Avendaño, M., Cañas, G., Yañez, M., Trivi, M.
The use of qualitative algorithms in images with dynamic speckle allows generating a three-dimensional intensity map, which correlates with the sample activity. Samples in an evaporation state will present temporary mobility related to their volume, which allows characterizing their topography. However, the quality of the topographic characterization depends on the illumination profile and the number of images or frames used. In this paper, a review of various qualitative processing algorithms is carried out in order to evaluate their robustness to the number of frames and their dependence on the beam profile, evaluating the characterization of topography hidden by a layer of paint in process of drying. We use an aluminum structure with perforations of different diameters and depths as a sample. Among the algorithms used, we highlight the results obtained by the normalized DJC method, which characterizes the topography of our sample with a correlation of 0.98 and presents stability to the number of frames used. Thus, with these results we validate the use of dynamic speckle in the characterization of a surface covered with paint.