Options
Dr. Oyarzo-Vera, Claudio
Nombre de publicaciĂ³n
Dr. Oyarzo-Vera, Claudio
Nombre completo
Oyarzo Vera, Claudio Andres
Facultad
Email
coyarzov@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationNon-Destructive assessment of the elastic properties of Low-Grade CLT panels(Forests, 2021)
; ; ;Opazo-Vega, Alexander ;Benedetti, FrancoNuñez-Decap, MarioThe use of cross-laminated timber panels (CLT) made of low-grade structural timber has steadily increased in developing countries. These panels usually present several natural defects, which can cause a high local variation of their orthotropic elastic properties, generating future structural serviceability problems. Our work aims to estimate the local variability of the elastic properties in low-grade CLT panels by combining nondestructive transverse vibration testing, numerical simulations, and regional sensitivity analysis (RSA). Four three-layer Radiata pine CLT panels were subjected to transverse vibration tests with supports at four points. Besides, a series of numerical simulations of the panels, considering the local variability of the elastic properties of the panels in eight zones, were carried out using the finite element method. Then, RSA analysis was performed to study in which ranges of values the panels’ elastic properties generated lower differences between the measured versus simulated dynamic properties. Finally, a structural quality control indicator was proposed for the CLT panels based on keeping low the probability that the elastic properties in the central zones do not exceed minimum acceptable values. The results obtained suggest that the proposed methodology is suitable for segregating CLT panels with high concentrations of defects such as pith presence. - PublicationA nonlinear model for multilayered rubber isolators based on a co-rotational formulation(International journal of disaster risk reduction, 2017)
; ; ;J de la LleraMiranda, S.This article proposes a geometrically nonlinear co-rotational model aimed to characterize the mechanical behavior of elastomeric seismic isolators. The model is able to capture the axial and lateral coupling in both axial directions, i.e. compression and tension of the isolator. Also reproduces the instability the loads in tension as well as in compression, and provides theoretical evidence of the non-symmetric behavior of the isolator in these two directions. To validate model results, a quasistatic analysis was performed on a typical isolator with many different shape factors. From the parametric analysis performed, it is observed that buckling loads are higher in tension than in compression. However, as the shape factor of the isolator increases, the behavior in compression and tension becomes symmetric. It becomes apparent that significant differences in normal stresses and strains under tensile and compressives loads are observed for axial loads smaller than 10% of the nominal buckling load. The example presented shows that lateral displacements of about ±25% of isolator radius and tension forces up to 10% of the buckling load are possible without inducing cavitation in the rubber. Accuracy of the model was also tested against finite element model results and experimental data showing satisfactory results. Furthermore, a response-history analysis of an isolated structure is presented and compared for two isolator models: the two-spring model and the model proposed herein. Finally, material nonlinearity was introduced in the dynamic analysis using a Bouc-Wen type element in parallel with the isolator. The responses are similar between models; however, significant differences occur locally in the isolator for high axial loads and/or large lateral displacements. - PublicationA roller type base isolation device with tensile strength(Shock and vibration, 2020)
; ; ;Pardo, E.Roco, ABase isolation is an efficient strategy for protecting structures, especially in countries with high seismic risk, such as Chile. This paper presents the conceptual model, mathematical model, experimental validation and numerical analysis of a roller type base isolation device that aims to solve problems of limited tensile strength (compared to its compressive strength) and lateral instability of all types of rubber bearing isolators when faced with elevated axial load. The conceptual model describes the device’s components and operation. The mathematical model establishes its constitutive law based on the equilibrium equations formulated considering large lateral displacements. Experimental tests were run on a shake-table with a load frame to simulate the isolator’s interaction with the superstructure, considering a combination of the device’s design parameters, in order to identify their effect. In the numerical analysis, six simple frame buildings were modelled and subjected to a seismic record using the proposed roller isolator. Error parameters were obtained between the numerical predictions and the experimental results in each loading and unloading cycle, varying between 1.6% and 5.1% for dissipated energy and 4.0% to 17.7% for the magnitude of force. The proposed device worked as a seismic isolator, reducing the structure’s response in a magnitude order in relation to the building fixed on its base.