Research Outputs

Now showing 1 - 3 of 3
  • Publication
    A nonlinear model for multilayered rubber isolators based on a co-rotational formulation
    (International journal of disaster risk reduction, 2017) ; ;
    J de la Llera
    ;
    Miranda, S.
    This article proposes a geometrically nonlinear co-rotational model aimed to characterize the mechanical behavior of elastomeric seismic isolators. The model is able to capture the axial and lateral coupling in both axial directions, i.e. compression and tension of the isolator. Also reproduces the instability the loads in tension as well as in compression, and provides theoretical evidence of the non-symmetric behavior of the isolator in these two directions. To validate model results, a quasistatic analysis was performed on a typical isolator with many different shape factors. From the parametric analysis performed, it is observed that buckling loads are higher in tension than in compression. However, as the shape factor of the isolator increases, the behavior in compression and tension becomes symmetric. It becomes apparent that significant differences in normal stresses and strains under tensile and compressives loads are observed for axial loads smaller than 10% of the nominal buckling load. The example presented shows that lateral displacements of about ±25% of isolator radius and tension forces up to 10% of the buckling load are possible without inducing cavitation in the rubber. Accuracy of the model was also tested against finite element model results and experimental data showing satisfactory results. Furthermore, a response-history analysis of an isolated structure is presented and compared for two isolator models: the two-spring model and the model proposed herein. Finally, material nonlinearity was introduced in the dynamic analysis using a Bouc-Wen type element in parallel with the isolator. The responses are similar between models; however, significant differences occur locally in the isolator for high axial loads and/or large lateral displacements.
  • Publication
    Damage assessment of squat, thin and lightly-reinforced concrete walls by the Park & Ang damage index
    (Journal of Building Engineering, 2019)
    Carrillo, Julian
    ;
    ;
    BlandĂ³n, Carlos
    Damage progression indexes are widely used to evaluate the performance of structural elements in buildings and bridges subjected to seismic actions. Although the Park & Ang damage index is currently implemented in several computational tools, the index has not been calibrated for squat and thin reinforced concrete (RC) elements controlled by shear deformations. It has been observed that the equations originally proposed for the Park & Ang damage index are unsuited for these types of structural elements, which are characterized by a failure mode dominated by shear instead of flexural deformations. The index was evaluated in this study for squat, thin and lightly-reinforced concrete walls using experimental data from a program comprising monotonic and reversedcyclic load testing of 25 RC squat cantilever walls. The experimental program included walls, with and without openings, having height-to-length ratios equal to 0.5, 1.0 and 2.0. Full-scale wall thickness and clear height were 100 mm and 2.4 m, respectively. The specimens were built using three different types of concrete (normal-weight, light-weight and self-consolidating) with nominal compressive strength of 15 MPa. A novel formulation for the parameter β included in the Park & Ang damage index was proposed in this study using key variables of the wall specimens such as web reinforcement ratio and cumulative ductility. Comparison between the computed damage index and crack pattern evolution observed in wall specimens at different damage states demonstrated the ability of the model to numerically assess the damage of the wall specimens. Hence, this new formulation proposed for parameter β leads to a better estimation of damage for this particular type of elements when applying the broadly used Park & Ang damage index.
  • Publication
    Vibration-based damage identification of an unreinforced masonry house model
    (Advances in structural engineering, 2017)
    Non-destructive vibration-based damage identification techniques are especially attractive for assessing damage in structures of high historical and architectural value. So far, most studies have focused on slender structures built using relatively homogeneous materials. In this study, global damage identification methods based on vibration response parameters were applied for identifying damage in an unreinforced masonry full-scale house model (non-homogeneous material and non-slender structure). The house model was dynamically loaded using an eccentric-mass shaker. Structural damage to the walls was initiated by increasing the amplitude of the applied load. At each damage state, a modal test was performed by impacting the walls with a calibrated hammer. Statistically significant variations of modal frequencies and the modal assurance criteria were considered as suitable parameters to identify damage. It was concluded that different sets of modes can be found for different states of damage because of material degradation, change in the support and connectivity conditions, and breaks in the members continuity generated by damage. All these changes are reflected in variations of modal frequencies and modal assurance criteria. It was also established that prior to identifying the damage distribution on the entire building, it was necessary to determine how the modal frequencies were related to each wall.