Research Outputs

Now showing 1 - 2 of 2
Thumbnail Image
Publication

Variation in the modal response of retrofitted unreinforced masonry walls at different levels of damage

2024, Dr. Oyarzo-Vera, Claudio, Dr. Sanhueza-Espinoza, Frank, Romero-Carrasco, JoaquĂ­n

This article presents the results of an experimental campaign conducted on a set of four unreinforced masonry walls at full scale. The purpose of this study is to assess, using non-destructive methods, the impact of retrofitting and damage on the modal response of masonry wall systems. Each wall underwent a sequence of increasing cyclic displacements applied by an actuator at the upper end of the specimen. Modal tests based on vibrations were performed both before and after rehabilitation, as well as during the sequence of increasing displacements. It was demonstrated that frequencies can identify progressive damage when the maximum crack is about to occur, as well as the effect of wall retrofitting when mass contribution is considerable. However, the modal assurance criterion indicator (MAC) fails to properly identify a trend of decreasing correlations as progressive damage increases; instead, it is sensitive to detecting maximum crack and instability conditions. Furthermore, it was determined that the coordinated modal assurance criterion indicator (COMAC) does not identify the damage distribution as expected. However, the cumulative COMAC provides a useful tool for quick visualization and interpretation of COMAC behavior. Finally, a novel damage indicator was tested, MACVF, which improves the trend and successfully identifies the most damage-sensitive mode, especially when the maximum level of damage is reached, giving MAC values below 80%. In addition, frequency variations ranged from 70% to 110% when TRM and WWM retrofitting techniques were applied.

No Thumbnail Available
Publication

Vibration-based damage identification of an unreinforced masonry house model

2017, Dr. Oyarzo-Vera, Claudio

Non-destructive vibration-based damage identification techniques are especially attractive for assessing damage in structures of high historical and architectural value. So far, most studies have focused on slender structures built using relatively homogeneous materials. In this study, global damage identification methods based on vibration response parameters were applied for identifying damage in an unreinforced masonry full-scale house model (non-homogeneous material and non-slender structure). The house model was dynamically loaded using an eccentric-mass shaker. Structural damage to the walls was initiated by increasing the amplitude of the applied load. At each damage state, a modal test was performed by impacting the walls with a calibrated hammer. Statistically significant variations of modal frequencies and the modal assurance criteria were considered as suitable parameters to identify damage. It was concluded that different sets of modes can be found for different states of damage because of material degradation, change in the support and connectivity conditions, and breaks in the members continuity generated by damage. All these changes are reflected in variations of modal frequencies and modal assurance criteria. It was also established that prior to identifying the damage distribution on the entire building, it was necessary to determine how the modal frequencies were related to each wall.