Options
Dr. León-Castro, Ernesto
Research Outputs
Bonferroni probabilistic ordered weighted averaging operators applied to agricultural commodities’ price analysis
2020, Dr. León-Castro, Ernesto, Espinoza-Audelo, Luis, Olazabal-Lugo, Maricruz, Blanco-Mesa, Fabio, Alfaro-Garcia, Victor
Financial markets have been characterized in recent years by their uncertainty and volatility. The price of assets is always changing so that the decisions made by consumers, producers, and governments about different products is not still accurate. In this situation, it is necessary to generate models that allow the incorporation of the knowledge and expectations of the markets and thus include in the results obtained not only the historical information, but also the present and future information. The present article introduces a new extension of the ordered weighted averaging (OWA) operator called the Bonferroni probabilistic ordered weighted average (B-POWA) operator. This operator is designed to unify in a single formulation the interrelation of the values given in a data set by the Bonferroni means and a weighted and probabilistic vector that models the attitudinal character, expectations, and knowledge of the decision-maker of a problem. The paper also studies the main characteristics and some families of the B-POWA operator. An illustrative example is also proposed to analyze the mathematical process of the operator. Finally, an application to corn price estimation designed to calculate the error between the price of an agricultural commodity using the B-POWA operator and a leading global market company is presented. The results show that the proposed operator exhibits a better general performance than the traditional methods.
Covariances with OWA operators and Bonferroni means
2020, Dr. León-Castro, Ernesto, Blanco-Mesa, Fabio, Merigó, José
The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem.